Your Name


Your Signature
$\square$

Student ID \#


|  | Vishal |  | Daeshik |  |
| ---: | :---: | :---: | :---: | :---: |
| Section | $1: 30$ | $2: 30$ | $1: 30$ | $2: 30$ |
| (circle one) | DA | DB | DC | DD |


| Problem | Total Points | Score |
| :---: | :---: | :---: |
| 1 | 8 |  |
| 2 | 8 |  |
| 3 | 9 |  |
| 4 | 8 |  |
| 5 | 8 |  |
| 6 | 50 |  |
| Total |  |  |

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Graphing calculators are not allowed.
- Do not share notes.
- In order to receive credit, you must show your work. Explain why your answers are correct.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (8 points) Consider the polar curve $r=e^{\theta}$ where $0 \leq \theta \leq 2 \pi$. Find all points $(x, y)$ on the curve where the tangent line is horizontal.

2 (8 points) Consider the curve in $\mathbf{R}^{2}$ with parametric equations $\quad x=t^{2}-1, \quad y=t^{3}-12 t$. For which values of $t$ is the curve concave up?

3 (9 points) Calculate the length of the curve

$$
x=t^{3}-3 t, \quad y=3 t^{2}
$$

between the points $(0,0)$ and $(2,12)$.

4 (8 points) Do the lines $\quad \frac{5-x}{3}=\frac{4-y}{5}=\frac{z+2}{7} \quad$ and $\quad 4-x=\frac{y+7}{3}=z-3 \quad$ intersect? If so, give the coordinates of the point of intersection.

5 (8 points) Find parametric equations for the tangent line to the graph of $\mathbf{r}(t)$ at the point $(3,0,0)$, where

$$
\mathbf{r}(t)=\left\langle\sqrt{t^{2}+8}, t \sin (\pi t), \ln (2 t+3)\right\rangle
$$

6 (9 points) Compute the distance from the point $(2,1,-1)$ to the line of intersection of the two planes $x=3$ and $y+z=2$.

