Math 307 D Midterm Summer 2015

Your Name Student 1D #

e Do not open this exam until you are told to begin. You will have 60 minutes for the exam.
e Check that you have a complete exam. There are 5 questions for a total of 55 points.

e You are allowed to have one handwritten note sheet. An equation sheet is provided on the
last page. No calculators are allowed.

e Cheating will result in a zero and be reported to the Dean’s Academic Conduct Committee.

e Show all your work. Unless explicitly stated otherwise in a particular question, if there is
no work supporting your answer, you will not receive credit for the problem. If you need more
space to answer a question, continue on the back of the page, and indicate that you have done
SO.

Question Points Score
1 10
2 11
3 10
4 11
5 13
Total: HY)
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1. Consider the initial value problem

(a)

()

y' =2y +2y =0, y(0) = 2,y'(0) = 2.

(4 points) Give the general solution of this differential equation.

Solution: The characteristic equation is r? — 2r + 2 = 0 which has roots at r = 1 4.
Hence the general solution is

y = Cle(1+i)t + 026(1—1‘)7&

or
y = dye’ cost + dye sint.

(4 points) Solve the given initial value problem.

Solution: Using the first form above gives the system of equations

y(O) =2=c +c
y'(0) =1 +i)er + (1 —i)er = (e1 + ) +i(c) — co).

Hence i(c; — ¢3) =0, so ¢; = ¢ = 1. Using the second form gives

so that d; = 2,d>, = 0. Hence
y = (Lt | (1)t

y = 2¢’ cost.

(2 points) Roughly describe how your solution to (b) would change if 2y above were
replaced by y.

Solution: The resulting characteristic equation is 72 — 2r + 1 = (r — 1)?, which has a
repeated root, so the new fundamental solution set is {e, te’}. The rest is essentially
the same—solve a system of two equations.
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2. A pond is fed by a small, polluted stream, and is drained for irrigation. The pond starts at 999
million gallons of pure water and is drained for irrigation at a constant rate of 1 million gallons
per hour. The polluted stream has 2 metric ton of nitric acid per million gallons of water. The
stream initially flows into the pond at a rate of 2 million gallons per hour, though it dries up
over time so that after ¢ hours it flows at a rate of 2/(1 4 ¢)? million gallons per hour.

(a) (3 points) When will the pond be emptied? (You may leave your answer as the solution
of an explicit quadratic equation at® + bt + ¢ = 0.)

Solution: Let V() be the volume of the pond in millions of gallons, so V' (0) = 999.
Water flows in at a rate of 2/(1 + ¢)? and out at a rate of 1, so

!/

2
T 1,  V(0)=999.

Hence V(t) = 1001 — %th — t. Setting this to 0 and multiplying by 1 + ¢ gives

—t? + 1000t + 999 = 0. (The numeric answer is slightly less than 1001, while the
explicit answer is ugly.)

(b) (4 points) Suppose V(t) is the volume of the pond after ¢ hours. Write down a differential

equation for the amount (in metric tons) of nitric acid in the pond after ¢ hours in terms
of V(t).

Solution: Let A(t) be the amount of nitric acid in the lake at time ¢, so A(0) = 0. The
stream adds 2/(1 +¢)? - 2 metric tons per hour, while irrigation subtracts 1- A(t)/V(t)
metric tons per hour. Hence

, 4 L, 4 1+t
(1412 V() (1462 999 + 1000t — 2~

(c) (4 points) Solve the differential equation from (b). Note: you will be unable to evaluate
all the integrals you encounter, so you may leave unevaluated integrals in your answer.

Solution: Write
A +p(t)A=g(t)
1+t

t .
for p(t) = g9ri000i=z and g(t) = ﬁ. Use u(t) = elo?®)ds; to integrate p, you can
factor the denominator (which has two real roots) and use partial fractions. Note that
1(0) = €® =1 here. Integrating factors gives the solution as

A(t) = ﬁ (/Otu(s)g(s) ds + c> .

where ¢ = A(0) = 0. As it turns out, integrating g requires special functions. In
perhaps painful detail,

t
ot 1+s 1+s 4
A(t) =e Jo 999+1000s—s2 ds (/ € 999410005 —s2 d5> .
0
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3. This problem concerns the differential equation

y = (y*—y)27v

(a) (1 point) Is the equation autonomous? Why or why not?

Solution: An autonomous equation by definition is of the form y = f(y), so
f(y) = (¥ —y)27" here.

(b) (6 points) Provide the following:
(i) the phase line;
(ii) an approximate slope field for —2 <y <4 and 0 <t < 6;
(iii) all equilibrium solutions;
(iv) some sample solution curves;
)

(v) label stable, unstable, and semistable equilibria.

Solution: We have (v —y)e™ = y(y — 1)(y + 1)27¥, so equilibrium solutions occur
at y = —1,0,1. Note that 27% > 0 always, so this term does not affect either stability
or equilibrium solutions. Indeed, f(y) is negative on (—oo,—1),(0,1) and positive on
(—1,0),(1,00). Hence y = —1 and y = 1 are unstable while y = 0 is stable.

(The phase line, slope field, and sample solutions are not included here.)
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(c) (3 points) If y(0) = 3, estimate y(2) using Euler’s method with A = 1. (You do not need
to simplify your expressions.)

Step k | t | i | Stk yk)

Solution: Here f(t,y) = (y* —y)27Y.

Step k ‘ 17 ‘ Yk ‘ S (e, i)
0 0 3 3
1 1 3+3=6 (6% — 6)/2% = 105/32

2 |2 6 + (6% — 6)/2° = 297/32
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4. Consider the differential equation

(a)

(c)

t(1+t)' + (24 t)v =0.

(3 points) Explain why there is a unique solution on I = (0, c0) for each initial condition
v(1) = wp.

Solution: Here
, 24+t

—_—y = ,
t(1+1)
so p(t) = t(Qlth) is continuous away from 0,—1, so in particular on I = (0,00). The
result then follows from the first order linear existence and uniqueness theorem from
lecture and the text.

(6 points) Show that v(t) = vo+5 is the unique solution from (a).

Solution: There are three approaches to this.

e We may verify the suggested solution is indeed a solution directly. Since the
equation is linear homogeneous, we can just check the vy = 2 case.

tA+t +2+tv=—-1+) 2+t 2+ 2+t)(1+)t 2 =0.

e We may recognize the equation as separable:

v’ 2+t

v t(1+1)

ln\’u\:—/ 2+t dt
t(1+1)

)

= 2In[t|+In|l+t +c

S0
v=1t2(1+1t)D.

e The equation is also susceptible to integrating factors. The computation is very
similar to the separable method and is not included.

(2 points) Find all equilibrium solutions. (Note: this question makes sense despite the
equation being non-autonomous.)

Solution: Suppose v(t) = vy, so v/ = 0, and the differential equation reads
0+ (24 t)vg = 0 for all t. Hence vy = 0 is the only equilibrium solution.
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5. (a) (3 points) Explain why y;(¢) =t is always a solution to the differential equation
m(t)y" =ty +y =0,

where m(t) is any given function.

Solution: We have y; = 1 and y{ = 0, so the differential equation reads

m(t)-0—t-1+t=0.

(b) (7 points) Use reduction of order to find a second solution (i.e. besides y;(t) =t) to
t(1+t)y" —ty +y =0, t > 0.

(Hint: you may use the result of Problem 4 even if you did not solve it.)

Solution: Let y, = uy; = ut. Hence y, = vt + v and y§ = u”t + 2u’. Plugging these
into the differential equation and simplifying gives

u"t(1+1t) +u' (2t + %) = 0.

Canceling t and letting v = u’ so v' = u” gives exactly the differential equation from
Problem 4. From that problem, v(t) = vo%. Breaking this into pieces and integrating
gives u(t) = vo% + % Int + c. Multiplying this by ¢ to get y2, we may choose ¢ = 0 and
v = 2 to arrive at y, = tInt — 1. The general solution is

Yo = it + co(tInt — 1).

(c) (3 points) Is the Wronskian of ¢t and ¢tInt — 1 ever zero? Why or why not? (Here ¢ > 0.)

Solution: No, it is not. There are several ways to see this. By Abel’s identity,
the Wronskian in ¢ > 0 is either always or never zero, so we can test it at ¢ = 1.
Then (1) = Liyi(1) = 1, yo(1) = =1, y4(1) = 1, and 1 -1 —1-—-1 = 2 # 0.
Computing the Wronskian for general ¢ is no more difficult and gives W (¢, tInt — 1) =
t(Int+1) — (tInt — 1) = t + 1, which is non-zero for ¢ > 0.

An abstract method is to show that two solutions to a homogeneous second order linear
equation have zero Wronskian only if they are scalar multiples of each other. Here it is
clear that y; = t and y» = tInt—1 are not scalar multiples. So, suppose wy, wy are some
fundamental solution set on ¢ > 0 (which we know exists), so that y; = c;w; + cows
and yo = dywy + dowy. Now compute

W (y1,y2) = W(ciwy + cowa, dywy + daws)
= ... =cdiW(wy,wy) + c1doW (wq, wq) + codi W (we, wy) + cadeW (we, wo)
=0+ c1doW (wy, we) — dycoW (wy,wy) + 0
= (c1dy — dyco)W (wy, wy).

By assumption, W (wy, ws) is never zero, so we must only consider whether ¢;dy — dyco
can be zero. (This is itself a two-by-two determinant.) So, suppose c;dy = dyco. If
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co = 0, then either ¢; = 0 or dy = 0; if ¢; = 0, then y; = Ow; + 0w, = 0 = ¢, which is
clearly false, while if dy = 0 then y; = c;w; and yo = dyw; are scalar multiples, which
is again false. So, ¢; # 0. By interchanging the symbols and repeating this argument,
we also have d; # 0. Hence cy/c; = do/d;, and again y; and ys are scalar multiples. So
indeed their Wronskian can never be zero.
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Equation Sheet

o y= ([ ut)gt)dt+c)

oy =ry+k T =k(T-Ts), v =+g - Tv

® tuir =ty + 1, Yoy = Yo + f(tn, Un)h

o Go(t) =0, Pnsa(t) = [y f(s5,0u(s)) ds

o y' = f(t,y. )

o ¥ +p)y +q(t) = g(t), y(to) = yo, ¥'(to) = ¥y
e ay +by +cy=0

e ar’+br+c=0
o= —’bivzlf"mc, r=Atiu

o Wyiy)=|"b P2l = yigh — e
Y1 Ya
oy =cre"t + ety = cie™ + cote™, y = creMsin(ut) + coe cos(put)

o ya(t) = u)yi(t), v =1



