Math 307 D	Midterm	Summer 2015
Your Name	Student ID #	

- Do not open this exam until you are told to begin. You will have 60 minutes for the exam.
- Check that you have a complete exam. There are 5 questions for a total of 55 points.
- You are allowed to have one handwritten note sheet. An **equation sheet** is provided on the last page. No calculators are allowed.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	10	
2	11	
3	10	
4	11	
5	13	
Total:	55	

Midterm

1. Consider the initial value problem

$$y'' - 2y' + 2y = 0,$$
 $y(0) = 2, y'(0) = 2.$

(a) (4 points) Give the general solution of this differential equation.

Solution: The characteristic equation is $r^2 - 2r + 2 = 0$ which has roots at $r = 1 \pm i$. Hence the general solution is

$$y = c_1 e^{(1+i)t} + c_2 e^{(1-i)t}$$

or

$$y = d_1 e^t \cos t + d_2 e^t \sin t.$$

(b) (4 points) Solve the given initial value problem.

Solution: Using the first form above gives the system of equations

$$y(0) = 2 = c_1 + c_2$$

$$y'(0) = 2 = (1+i)c_1 + (1-i)c_2 = (c_1 + c_2) + i(c_1 - c_2).$$

Hence $i(c_1 - c_2) = 0$, so $c_1 = c_2 = 1$. Using the second form gives

$$y(0) = 2 = d_1$$

 $y'(0) = 2 = d_1 + 0 + d_2,$

so that $d_1 = 2, d_2 = 0$. Hence

$$y = e^{(1+i)t} + e^{(1-i)t}$$
$$y = 2e^t \cos t.$$

(c) (2 points) Roughly describe how your solution to (b) would change if 2y above were replaced by y.

Solution: The resulting characteristic equation is $r^2 - 2r + 1 = (r - 1)^2$, which has a repeated root, so the new fundamental solution set is $\{e^t, te^t\}$. The rest is essentially the same—solve a system of two equations.

- 2. A pond is fed by a small, polluted stream, and is drained for irrigation. The pond starts at 999 million gallons of pure water and is drained for irrigation at a constant rate of 1 million gallons per hour. The polluted stream has 2 metric ton of nitric acid per million gallons of water. The stream initially flows into the pond at a rate of 2 million gallons per hour, though it dries up over time so that after t hours it flows at a rate of $2/(1 + t)^2$ million gallons per hour.
 - (a) (3 points) When will the pond be emptied? (You may leave your answer as the solution of an explicit quadratic equation $at^2 + bt + c = 0$.)

Solution: Let V(t) be the volume of the pond in millions of gallons, so V(0) = 999. Water flows in at a rate of $2/(1+t)^2$ and out at a rate of 1, so

$$V' = \frac{2}{(1+t)^2} - 1, \qquad V(0) = 999.$$

Hence $V(t) = 1001 - \frac{2}{1+t} - t$. Setting this to 0 and multiplying by 1 + t gives $-t^2 + 1000t + 999 = 0$. (The numeric answer is slightly less than 1001, while the explicit answer is ugly.)

(b) (4 points) Suppose V(t) is the volume of the pond after t hours. Write down a differential equation for the amount (in metric tons) of nitric acid in the pond after t hours in terms of V(t).

Solution: Let A(t) be the amount of nitric acid in the lake at time t, so A(0) = 0. The stream adds $2/(1+t)^2 \cdot 2$ metric tons per hour, while irrigation subtracts $1 \cdot A(t)/V(t)$ metric tons per hour. Hence

$$A' = \frac{4}{(1+t)^2} - \frac{1}{V(t)}A = \frac{4}{(1+t)^2} - \frac{1+t}{999 + 1000t - t^2}A$$

(c) (4 points) Solve the differential equation from (b). Note: you will be unable to evaluate all the integrals you encounter, so you may leave unevaluated integrals in your answer.

Solution: Write

$$A' + p(t)A = g(t)$$

for $p(t) = \frac{1+t}{999+1000t-t^2}$ and $g(t) = \frac{4}{(1+t)^2}$. Use $\mu(t) = e^{\int_0^t p(s) ds}$; to integrate p, you can factor the denominator (which has two real roots) and use partial fractions. Note that $\mu(0) = e^0 = 1$ here. Integrating factors gives the solution as

$$A(t) = \frac{1}{\mu(t)} \left(\int_0^t \mu(s)g(s) \, ds + c \right).$$

where c = A(0) = 0. As it turns out, integrating μg requires special functions. In perhaps painful detail,

$$A(t) = e^{-\int_0^t \frac{1+s}{999+1000s-s^2} \, ds} \left(\int_0^t e^{\frac{1+s}{999+1000s-s^2}} \frac{4}{(1+s)^2} \, ds \right).$$

3. This problem concerns the differential equation

$$y' = (y^3 - y)2^{-y}.$$

(a) (1 point) Is the equation autonomous? Why or why not?

Solution: An autonomous equation by definition is of the form y' = f(y), so $f(y) = (y^3 - y)2^{-y}$ here.

- (b) (6 points) Provide the following:
 - (i) the phase line;
 - (ii) an *approximate* slope field for $-2 \le y \le 4$ and $0 \le t \le 6$;
 - (iii) all equilibrium solutions;
 - (iv) some sample solution curves;
 - (v) label stable, unstable, and semistable equilibria.

Solution: We have $(y^3 - y)e^{-y} = y(y - 1)(y + 1)2^{-y}$, so equilibrium solutions occur at y = -1, 0, 1. Note that $2^{-y} > 0$ always, so this term does not affect either stability or equilibrium solutions. Indeed, f(y) is negative on $(-\infty, -1), (0, 1)$ and positive on $(-1, 0), (1, \infty)$. Hence y = -1 and y = 1 are unstable while y = 0 is stable.

(The phase line, slope field, and sample solutions are not included here.)

(c) (3 points) If y(0) = 3, estimate y(2) using Euler's method with h = 1. (You do not need to simplify your expressions.)

Step k	t_k	y_k	$f(t_k, y_k)$

Solution: Here $f(t, y) = (y^3 - y)2^{-y}$.					
t_k	y_k	$f(t_k, y_k)$			
0	3	3			
1	3 + 3 = 6	$(6^3 - 6)/2^6 = 105/32$			
2	$6 + (6^3 - 6)/2^6 = 297/32$				
-	: Here $f(t, y)$ t_k 0 1 2	: Here $f(t, y) = (y^3 - y)2^{-y}$. t_k y_k 0 3 1 3+3=6 2 6+(6^3-6)/2^6 = 297/32			

4. Consider the differential equation

$$t(1+t)v' + (2+t)v = 0.$$

(a) (3 points) Explain why there is a unique solution on $I = (0, \infty)$ for each initial condition $v(1) = v_0$.

Solution: Here

$$v' + \frac{2+t}{t(1+t)}v = 0,$$

so $p(t) = \frac{2+t}{t(1+t)}$ is continuous away from 0, -1, so in particular on $I = (0, \infty)$. The result then follows from the first order linear existence and uniqueness theorem from lecture and the text.

(b) (6 points) Show that $v(t) = v_0 \frac{1+t}{2t^2}$ is the unique solution from (a).

Solution: There are three approaches to this.

• We may verify the suggested solution is indeed a solution directly. Since the equation is linear homogeneous, we can just check the $v_0 = 2$ case.

$$v = \frac{1+t}{t^2} = t^{-2} + t^{-1} = \frac{1}{t^2}(1+t)$$
$$v' = -2t^{-3} - t^{-2} = -\frac{1}{t^3}(2+t)$$
$$t(1+t)v' + (2+t)v = -(1+t)(2+t)t^{-2} + (2+t)(1+t)t^{-2} = 0.$$

• We may recognize the equation as separable:

$$\begin{aligned} \frac{v'}{v} &= -\frac{2+t}{t(1+t)}\\ \ln|v| &= -\int \frac{2+t}{t(1+t)} dt\\ &= -\int \left(\frac{2}{t} - \frac{1}{1+t}\right) dt\\ &= -2\ln|t| + \ln|1+t| + c\end{aligned}$$

 \mathbf{SO}

$$v = t^{-2}(1+t)D.$$

- The equation is also susceptible to integrating factors. The computation is very similar to the separable method and is not included.
- (c) (2 points) Find all equilibrium solutions. (Note: this question makes sense despite the equation being non-autonomous.)

Solution: Suppose $v(t) = v_0$, so v' = 0, and the differential equation reads $0 + (2 + t)v_0 = 0$ for all t. Hence $v_0 = 0$ is the only equilibrium solution.

5. (a) (3 points) Explain why $y_1(t) = t$ is always a solution to the differential equation

$$m(t)y'' - ty' + y = 0,$$

where m(t) is any given function.

Solution: We have $y'_1 = 1$ and $y''_1 = 0$, so the differential equation reads

$$m(t) \cdot 0 - t \cdot 1 + t = 0.$$

(b) (7 points) Use reduction of order to find a second solution (i.e. besides $y_1(t) = t$) to

$$t(1+t)y'' - ty' + y = 0, t > 0.$$

(Hint: you may use the result of Problem 4 even if you did not solve it.)

Solution: Let $y_2 = uy_1 = ut$. Hence $y'_2 = u't + u$ and $y''_2 = u''t + 2u'$. Plugging these into the differential equation and simplifying gives

$$u''t^2(1+t) + u'(2t+t^2) = 0.$$

Canceling t and letting v = u' so v' = u'' gives exactly the differential equation from Problem 4. From that problem, $v(t) = v_0 \frac{1+t}{2t^2}$. Breaking this into pieces and integrating gives $u(t) = v_0 \frac{1}{t} + \frac{v_0}{2} \ln t + c$. Multiplying this by t to get y_2 , we may choose c = 0 and $v_0 = 2$ to arrive at $y_2 = t \ln t - 1$. The general solution is

$$y_2 = c_1 t + c_2 (t \ln t - 1).$$

(c) (3 points) Is the Wronskian of t and $t \ln t - 1$ ever zero? Why or why not? (Here t > 0.)

Solution: No, it is not. There are several ways to see this. By Abel's identity, the Wronskian in t > 0 is either always or never zero, so we can test it at t = 1. Then $y_1(1) = 1, y'_1(1) = 1, y_2(1) = -1, y'_2(1) = 1$, and $1 \cdot 1 - 1 \cdot -1 = 2 \neq 0$. Computing the Wronskian for general t is no more difficult and gives $W(t, t \ln t - 1) = t(\ln t + 1) - (t \ln t - 1) = t + 1$, which is non-zero for t > 0.

An abstract method is to show that two solutions to a homogeneous second order linear equation have zero Wronskian only if they are scalar multiples of each other. Here it is clear that $y_1 = t$ and $y_2 = t \ln t - 1$ are not scalar multiples. So, suppose w_1, w_2 are some fundamental solution set on t > 0 (which we know exists), so that $y_1 = c_1w_1 + c_2w_2$ and $y_2 = d_1w_1 + d_2w_2$. Now compute

$$W(y_1, y_2) = W(c_1w_1 + c_2w_2, d_1w_1 + d_2w_2)$$

= ... = $c_1d_1W(w_1, w_1) + c_1d_2W(w_1, w_2) + c_2d_1W(w_2, w_1) + c_2d_2W(w_2, w_2)$
= $0 + c_1d_2W(w_1, w_2) - d_1c_2W(w_1, w_2) + 0$
= $(c_1d_2 - d_1c_2)W(w_1, w_2).$

By assumption, $W(w_1, w_2)$ is never zero, so we must only consider whether $c_1d_2 - d_1c_2$ can be zero. (This is itself a two-by-two determinant.) So, suppose $c_1d_2 = d_1c_2$. If

 $c_2 = 0$, then either $c_1 = 0$ or $d_2 = 0$; if $c_1 = 0$, then $y_1 = 0w_1 + 0w_2 = 0 = t$, which is clearly false, while if $d_2 = 0$ then $y_1 = c_1w_1$ and $y_2 = d_1w_1$ are scalar multiples, which is again false. So, $c_1 \neq 0$. By interchanging the symbols and repeating this argument, we also have $d_1 \neq 0$. Hence $c_2/c_1 = d_2/d_1$, and again y_1 and y_2 are scalar multiples. So indeed their Wronskian can never be zero.

Equation Sheet

• y' = f(t, y)• y' = f(t)g(y)• $\int \frac{dy}{q(y)} = \int f(t) dt$ • $y' + p(t)y = g(t), y(t_0) = y_0$ • $\mu(t) = e^{\int p(t) dt}$ • $y = \frac{1}{\mu(t)} \left(\int \mu(t) g(t) dt + c \right)$ • $y' = ry + k, T' = k(T - T_S), v' = \pm g - \frac{m}{h}v$ • $t_{n+1} = t_n + h, y_{n+1} = y_n + f(t_n, y_n)h$ • $\phi_0(t) = 0, \ \phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) \, ds$ • y'' = f(t, y, y')• $y'' + p(t)y' + q(t) = q(t), y(t_0) = y_0, y'(t_0) = y'_0$ • ay'' + by' + cy = 0• $ar^2 + br + c = 0$ • $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, r = \lambda \pm i\mu$ • $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2$ • $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}, \ y = c_1 e^{rt} + c_2 t e^{rt}, \ y = c_1 e^{\lambda t} \sin(\mu t) + c_2 e^{\lambda t} \cos(\mu t)$ • $y_2(t) = u(t)y_1(t), v = u'$