
Math 307 D Midterm Summer 2015

Your Name Student ID #

• Do not open this exam until you are told to begin. You will have 60 minutes for the exam.

• Check that you have a complete exam. There are 5 questions for a total of 55 points.

• You are allowed to have one handwritten note sheet. An equation sheet is provided on the
last page. No calculators are allowed.

• Cheating will result in a zero and be reported to the Dean’s Academic Conduct Committee.

• Show all your work. Unless explicitly stated otherwise in a particular question, if there is
no work supporting your answer, you will not receive credit for the problem. If you need more
space to answer a question, continue on the back of the page, and indicate that you have done
so.

Question Points Score

1 10

2 11

3 10

4 11

5 13

Total: 55
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1. Consider the initial value problem

y′′ − 2y′ + 2y = 0, y(0) = 2, y′(0) = 2.

(a) (4 points) Give the general solution of this differential equation.

Solution: The characteristic equation is r2 − 2r+ 2 = 0 which has roots at r = 1± i.
Hence the general solution is

y = c1e
(1+i)t + c2e

(1−i)t

or
y = d1e

t cos t+ d2e
t sin t.

(b) (4 points) Solve the given initial value problem.

Solution: Using the first form above gives the system of equations

y(0) = 2 = c1 + c2

y′(0) = 2 = (1 + i)c1 + (1− i)c2 = (c1 + c2) + i(c1 − c2).

Hence i(c1 − c2) = 0, so c1 = c2 = 1. Using the second form gives

y(0) = 2 = d1

y′(0) = 2 = d1 + 0 + d2,

so that d1 = 2, d2 = 0. Hence

y = e(1+i)t + e(1−i)t

y = 2et cos t.

(c) (2 points) Roughly describe how your solution to (b) would change if 2y above were
replaced by y.

Solution: The resulting characteristic equation is r2 − 2r + 1 = (r − 1)2, which has a
repeated root, so the new fundamental solution set is {et, tet}. The rest is essentially
the same—solve a system of two equations.
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2. A pond is fed by a small, polluted stream, and is drained for irrigation. The pond starts at 999
million gallons of pure water and is drained for irrigation at a constant rate of 1 million gallons
per hour. The polluted stream has 2 metric ton of nitric acid per million gallons of water. The
stream initially flows into the pond at a rate of 2 million gallons per hour, though it dries up
over time so that after t hours it flows at a rate of 2/(1 + t)2 million gallons per hour.

(a) (3 points) When will the pond be emptied? (You may leave your answer as the solution
of an explicit quadratic equation at2 + bt+ c = 0.)

Solution: Let V (t) be the volume of the pond in millions of gallons, so V (0) = 999.
Water flows in at a rate of 2/(1 + t)2 and out at a rate of 1, so

V ′ =
2

(1 + t)2
− 1, V (0) = 999.

Hence V (t) = 1001 − 2
1+t
− t. Setting this to 0 and multiplying by 1 + t gives

−t2 + 1000t + 999 = 0. (The numeric answer is slightly less than 1001, while the
explicit answer is ugly.)

(b) (4 points) Suppose V (t) is the volume of the pond after t hours. Write down a differential
equation for the amount (in metric tons) of nitric acid in the pond after t hours in terms
of V (t).

Solution: Let A(t) be the amount of nitric acid in the lake at time t, so A(0) = 0. The
stream adds 2/(1 + t)2 · 2 metric tons per hour, while irrigation subtracts 1 ·A(t)/V (t)
metric tons per hour. Hence

A′ =
4

(1 + t)2
− 1

V (t)
A =

4

(1 + t)2
− 1 + t

999 + 1000t− t2
A.

(c) (4 points) Solve the differential equation from (b). Note: you will be unable to evaluate
all the integrals you encounter, so you may leave unevaluated integrals in your answer.

Solution: Write
A′ + p(t)A = g(t)

for p(t) = 1+t
999+1000t−t2 and g(t) = 4

(1+t)2
. Use µ(t) = e

∫ t
0 p(s) ds; to integrate p, you can

factor the denominator (which has two real roots) and use partial fractions. Note that
µ(0) = e0 = 1 here. Integrating factors gives the solution as

A(t) =
1

µ(t)

(∫ t

0

µ(s)g(s) ds+ c

)
.

where c = A(0) = 0. As it turns out, integrating µg requires special functions. In
perhaps painful detail,

A(t) = e
−

∫ t
0

1+s

999+1000s−s2
ds

(∫ t

0

e
1+s

999+1000s−s2
4

(1 + s)2
ds

)
.
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3. This problem concerns the differential equation

y′ = (y3 − y)2−y.

(a) (1 point) Is the equation autonomous? Why or why not?

Solution: An autonomous equation by definition is of the form y′ = f(y), so
f(y) = (y3 − y)2−y here.

(b) (6 points) Provide the following:

(i) the phase line;

(ii) an approximate slope field for −2 ≤ y ≤ 4 and 0 ≤ t ≤ 6;

(iii) all equilibrium solutions;

(iv) some sample solution curves;

(v) label stable, unstable, and semistable equilibria.

Solution: We have (y3 − y)e−y = y(y − 1)(y + 1)2−y, so equilibrium solutions occur
at y = −1, 0, 1. Note that 2−y > 0 always, so this term does not affect either stability
or equilibrium solutions. Indeed, f(y) is negative on (−∞,−1), (0, 1) and positive on
(−1, 0), (1,∞). Hence y = −1 and y = 1 are unstable while y = 0 is stable.

(The phase line, slope field, and sample solutions are not included here.)
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(c) (3 points) If y(0) = 3, estimate y(2) using Euler’s method with h = 1. (You do not need
to simplify your expressions.)

Step k tk yk f(tk, yk)

Solution: Here f(t, y) = (y3 − y)2−y.

Step k tk yk f(tk, yk)

0 0 3 3
1 1 3 + 3 = 6 (63 − 6)/26 = 105/32
2 2 6 + (63 − 6)/26 = 297/32
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4. Consider the differential equation

t(1 + t)v′ + (2 + t)v = 0.

(a) (3 points) Explain why there is a unique solution on I = (0,∞) for each initial condition
v(1) = v0.

Solution: Here

v′ +
2 + t

t(1 + t)
v = 0,

so p(t) = 2+t
t(1+t)

is continuous away from 0,−1, so in particular on I = (0,∞). The
result then follows from the first order linear existence and uniqueness theorem from
lecture and the text.

(b) (6 points) Show that v(t) = v0
1+t
2t2

is the unique solution from (a).

Solution: There are three approaches to this.

• We may verify the suggested solution is indeed a solution directly. Since the
equation is linear homogeneous, we can just check the v0 = 2 case.

v =
1 + t

t2
= t−2 + t−1 =

1

t2
(1 + t)

v′ = −2t−3 − t−2 = − 1

t3
(2 + t)

t(1 + t)v′ + (2 + t)v = −(1 + t)(2 + t)t−2 + (2 + t)(1 + t)t−2 = 0.

• We may recognize the equation as separable:

v′

v
= − 2 + t

t(1 + t)

ln |v| = −
∫

2 + t

t(1 + t)
dt

= −
∫ (

2

t
− 1

1 + t

)
dt

= −2 ln |t|+ ln |1 + t|+ c

so
v = t−2(1 + t)D.

• The equation is also susceptible to integrating factors. The computation is very
similar to the separable method and is not included.

(c) (2 points) Find all equilibrium solutions. (Note: this question makes sense despite the
equation being non-autonomous.)

Solution: Suppose v(t) = v0, so v′ = 0, and the differential equation reads
0 + (2 + t)v0 = 0 for all t. Hence v0 = 0 is the only equilibrium solution.
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5. (a) (3 points) Explain why y1(t) = t is always a solution to the differential equation

m(t)y′′ − ty′ + y = 0,

where m(t) is any given function.

Solution: We have y′1 = 1 and y′′1 = 0, so the differential equation reads

m(t) · 0− t · 1 + t = 0.

(b) (7 points) Use reduction of order to find a second solution (i.e. besides y1(t) = t) to

t(1 + t)y′′ − ty′ + y = 0, t > 0.

(Hint: you may use the result of Problem 4 even if you did not solve it.)

Solution: Let y2 = uy1 = ut. Hence y′2 = u′t + u and y′′2 = u′′t + 2u′. Plugging these
into the differential equation and simplifying gives

u′′t2(1 + t) + u′(2t+ t2) = 0.

Canceling t and letting v = u′ so v′ = u′′ gives exactly the differential equation from
Problem 4. From that problem, v(t) = v0

1+t
2t2

. Breaking this into pieces and integrating
gives u(t) = v0

1
t

+ v0
2

ln t+ c. Multiplying this by t to get y2, we may choose c = 0 and
v0 = 2 to arrive at y2 = t ln t− 1. The general solution is

y2 = c1t+ c2(t ln t− 1).

(c) (3 points) Is the Wronskian of t and t ln t− 1 ever zero? Why or why not? (Here t > 0.)

Solution: No, it is not. There are several ways to see this. By Abel’s identity,
the Wronskian in t > 0 is either always or never zero, so we can test it at t = 1.
Then y1(1) = 1, y′1(1) = 1, y2(1) = −1, y′2(1) = 1, and 1 · 1 − 1 · −1 = 2 6= 0.
Computing the Wronskian for general t is no more difficult and gives W (t, t ln t− 1) =
t(ln t+ 1)− (t ln t− 1) = t+ 1, which is non-zero for t > 0.

An abstract method is to show that two solutions to a homogeneous second order linear
equation have zero Wronskian only if they are scalar multiples of each other. Here it is
clear that y1 = t and y2 = t ln t−1 are not scalar multiples. So, suppose w1, w2 are some
fundamental solution set on t > 0 (which we know exists), so that y1 = c1w1 + c2w2

and y2 = d1w1 + d2w2. Now compute

W (y1, y2) = W (c1w1 + c2w2, d1w1 + d2w2)

= . . . = c1d1W (w1, w1) + c1d2W (w1, w2) + c2d1W (w2, w1) + c2d2W (w2, w2)

= 0 + c1d2W (w1, w2)− d1c2W (w1, w2) + 0

= (c1d2 − d1c2)W (w1, w2).

By assumption, W (w1, w2) is never zero, so we must only consider whether c1d2− d1c2
can be zero. (This is itself a two-by-two determinant.) So, suppose c1d2 = d1c2. If
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c2 = 0, then either c1 = 0 or d2 = 0; if c1 = 0, then y1 = 0w1 + 0w2 = 0 = t, which is
clearly false, while if d2 = 0 then y1 = c1w1 and y2 = d1w1 are scalar multiples, which
is again false. So, c1 6= 0. By interchanging the symbols and repeating this argument,
we also have d1 6= 0. Hence c2/c1 = d2/d1, and again y1 and y2 are scalar multiples. So
indeed their Wronskian can never be zero.
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Equation Sheet

• y′ = f(t, y)

• y′ = f(t)g(y)

•
∫

dy
g(y)

=
∫
f(t) dt

• y′ + p(t)y = g(t), y(t0) = y0

• µ(t) = e
∫
p(t) dt

• y = 1
µ(t)

(
∫
µ(t)g(t) dt+ c)

• y′ = ry + k, T ′ = k(T − TS), v′ = ±g − m
k
v

• tn+1 = tn + h, yn+1 = yn + f(tn, yn)h

• φ0(t) = 0, φn+1(t) =
∫ t
0
f(s, φn(s)) ds

• y′′ = f(t, y, y′)

• y′′ + p(t)y′ + q(t) = g(t), y(t0) = y0, y
′(t0) = y′0

• ay′′ + by′ + cy = 0

• ar2 + br + c = 0

• r = −b±
√
b2−4ac
2a

, r = λ± iµ

• W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y′1y2

• y = c1e
r1t + c2e

r2t, y = c1e
rt + c2te

rt, y = c1e
λt sin(µt) + c2e

λt cos(µt)

• y2(t) = u(t)y1(t), v = u′


