

- Do not open this exam until you are told to begin. You will have 50 minutes for the exam.
- Check that you have a complete exam. There are 5 questions for a total of 44 points.
- You are allowed to have one handwritten note sheet. An **equation sheet** is provided on the last page. No calculators are allowed.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

1. Consider the differential equation

$$
(2-t)y = \frac{e^t}{t(t^2+1)} - ty'.
$$

- (a) (2 points) Check all that apply. The differential equation is...
	- \bigcirc Autonomous $\sqrt{ }$ $\sqrt{\text{Linear}} \quad \bigcirc \text{Separable}$
	- $\sqrt{}$ First order $\phantom{\sqrt{\hskip2mm}}$ Second order $\phantom{\sqrt{\hskip2mm}}$ Constant-coefficient
- (b) (5 points) Find the general solution of the differential equation. You may assume $t > 0$.

Solution: The equation in standard form is

$$
y' + \frac{2-t}{t}y = \frac{e^t}{t^2(t^2+1)}
$$

so the integrating factor is

$$
\mu(t) = \exp\left(\int \frac{2-t}{t} dt\right) = \exp(2 \ln t - t) = t^2 e^{-t}.
$$

The general solution is then

$$
y(t) = \frac{1}{\mu(t)} \left(\int \frac{1}{t^2 + 1} dt + c \right)
$$

$$
= \frac{e^t}{t^2} (\arctan(t) + c).
$$

(c) (2 points) Find the particular solution with $y(1) = 0$. (If you did not solve (b), you may use a reasonable guess instead.)

Solution: We have $y(1) = 0 = e(\arctan(1) + c),$ so $c = -\arctan(1) = -\pi/4$, giving $y(t) = \frac{e^t}{b}$ $\frac{\sigma}{t^2}(\arctan(t)-\pi/4).$

2. (a) (4 points) Find an explicit solution of the differential equation

$$
y' = \frac{1 - y^2}{2y}.
$$

Solution: The equation is separable, giving

$$
\int \frac{2y}{1-y^2} \, dy = \int dt.
$$

We can use u-substitution with $u = 1 - y^2$ for the integral. We can also use partial fractions. The numerator has lower degree than the denominator, so polynomial division is not necessary. Since $1 - y^2 = (1 - y)(1 + y)$,

$$
\frac{2y}{(1-y)(1+y)} = \frac{A}{1-y} + \frac{B}{1+y}
$$

.

We find $A = 1, B = -1$. Hence we have an implicit solution

$$
-\ln|1-y| - \ln|1+y| = t + c.
$$

Solving for y , we have

$$
\ln |(1 - y)(1 + y)| = -t - c
$$

so that

$$
|1 - y^2| = De^{-t}
$$

and hence

$$
y = \pm \sqrt{1 - De^{-t}}.
$$

(b) (5 points) Classify the equilibrium solutions of the differential equation

$$
y' = (e^{1-y} - e^2)y
$$

as stable, semistable, or unstable. Draw the phase line and some sample solutions. If $y(0) = -1/2$, what is $\lim_{t\to\infty} y(t)$?

Solution: We have $e^{1-y} = e^2$ when $y = -1$, so the equilibrium solutions are $y = 0$ and $y = -1$. We further find

$$
y' > 0 \qquad \text{when} \qquad -1 < y < 0
$$

and

 $y' < 0$ when $y < -1$, $y > 0$.

 $y(t) = 0$ is then a stable equilibrium while $y(t) = -1$ is unstable. If $y(0) = -1/2$, we see $\lim_{t\to\infty} y(t) = 0$. (The phase line and sample solutions have been omitted.)

3. (a) (3 points) Given

 $y'=ty+y^2$ and $y(0) = 1$,

estimate $y(3)$ using Euler's method with $h = 1$.

(b) (3 points) Determine the largest interval on which the IVP

$$
\cos(t/2)y' - \sin(t/2)y = \ln|t+1|, \qquad y(0) = 5
$$

is guaranteed to exist. Do not attempt to solve the differential equation.

Solution: In standard form, the equation is

$$
y' - \frac{\sin(t/2)}{\cos(t/2)}y = \frac{\ln|t+1|}{\cos(t/2)}.
$$

The coefficient on y is continuous except when $\cos(t/2) = 0$; the closest points of discontinuity to 0 are $t = \pm \pi$. The right-hand side is continuous except when $t = -1$ or $\cos(t/2) = 0$; the closest points of discontinuity to 0 are $t = -1, +\pi$. Hence the interval is $-1 < t < \pi$.

(c) (3 points) Compute the second Picard iterate $\phi_2(t)$ for the IVP

$$
y' = y^3 + 14t, \qquad y(0) = 0.
$$

Solution: We have $\phi_0(t) = 0$, and by definition $\phi_{k+1}(t) = \int_0^t f(s, \phi_k(s)) ds$ where $f(t, y) = y^3 + 14t$. We compute

$$
\phi_0(t) = 0
$$

\n
$$
\phi_1(t) = \int_0^t 14s \, ds = 7t^2
$$

\n
$$
\phi_2(t) = \int_0^t (7^3s^6 + 14s) \, ds = 49t^7 + 7t^2.
$$

- 4. You are enjoying a cool 32 ounce drink on a warm spring day. You drink through a straw at a constant rate of 1 ounce per minute. Sadly, liquid is dripping through a hole in the bottom of the cup, losing liquid at a rate of $1/10$ th of an ounce per minute for each ounce of liquid remaining.
	- (a) (3 points) Write down (but do not solve) an initial value problem for the volume $V(t)$ of liquid left after t minutes.

Solution: Drinking through the straw contributes -1 to V' . The hole contributes $-V(t)/10$ to V' , so

$$
V' = -1 - \frac{V}{10}, \qquad V(0) = 32.
$$

(b) (4 points) The outside temperature is 70 \degree F, and the drink is initially 40 \degree F. The drink warms as a rate of 0.5° F per minute per degree of temperature difference. Write down (but do not solve) an initial value problem for the temperature $T(t)$ of the liquid after t minutes. What is $\lim_{t\to\infty} T(t)$?

Solution: From Newton's law of cooling, we have

$$
T' = -0.5(T - 70), \qquad T(0) = 40.
$$

From physical intuition, $\lim_{t\to\infty} T(t) = 70$, which is also a stable equilibrium solution.

5. (a) (3 points) Compute the **Wronskian** of $\{y_1, y_2\} = \{\cos e^t, \sin e^t\}$. In fact, the differential equation

$$
y'' = y' - e^{2t}y
$$

has $\{y_1, y_2\}$ as a **fundamental solution set**—what does this mean for applications?

Solution: The Wronskian is

$$
W(y_1, y_2)(t) = y_1 y_2' - y_1' y_2 = \cos e^t \cdot (e^t \cos e^t) - (-e^t \sin e^t) \cdot \sin e^t
$$

= $e^t (\cos^2 e^t + \sin^2 e^t) = e^t$.

Practically speaking, any IVP with the given DE and initial conditions $y(t_0) = y_0$, $y'(t_0) = y'_0$ has a unique solution of the form $y(t) = c_1y_1 + c_2y_2$.

(b) (3 points) Find the general solution of the differential equation

$$
y'' + 10y' + 25y = 0.
$$

Solution: The characteristic equation is $r^2 + 10r + 25 = (r + 5)^2$. A fundamental solution set is then $\{e^{-5t}, te^{-5t}\}$, so the general solution is

$$
y = c_1 e^{-5t} + c_2 t e^{-5t}.
$$

(c) (4 points) Find two different fundamental solution sets of the differential equation

$$
y'' + 4y' + 13y = 0.
$$

What can you say about the **limiting behavior** $\lim_{t\to\infty} y$?

Solution: The characteristic equation is $r^2 + 4r + 13 = 0$, which has roots $r = -2 \pm 3i$. Hence two fundamental solution sets are

$$
{e^{(-2+3i)t}, e^{(-2-3i)t}}, \qquad {e^{-2t}\cos(3t), e^{-2t}\sin(3t)}.
$$

Since $e^{-2t} \to 0$ as $t \to \infty$, any solution tends to 0 as well, regardless of initial conditions.

Equation Sheet

- $y' = f(t, y)$ • $y' = f(t)g(y)$ • $\int \frac{dy}{g(y)} = \int f(t) dt$ • $y' + p(t)y = g(t), y(t_0) = y_0$ • $\mu(t) = e^{\int p(t) dt}$ \bullet $y = \frac{1}{u(x)}$ $\frac{1}{\mu(t)}(\int \mu(t)g(t) dt + c)$ • $y' = ry \pm k$, $T' = -k(T - T_S)$, $mv' = \pm mg - kv$ • $t_{n+1} = t_n + h$, $y_{n+1} = y_n + f(t_n, y_n)h$ • $\phi_0(t) = 0$, $\phi_{n+1}(t) = \int_0^t f(s, \phi_n(s)) ds$ • $y'' = f(t, y, y')$ • $y'' + p(t)y' + q(t) = g(t), y(t_0) = y_0, y'(t_0) = y'_0$ • $ay'' + by' + cy = 0$ • $ar^2 + br + c = 0$ • $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\frac{2a}{2a}$, $r = \lambda \pm i\omega$ • $W(y_1, y_2) =$ y_1 y_2 y'_1 y'_2 $= y_1 y_2' - y_1' y_2$
	- $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}, y = c_1 e^{r t} + c_2 t e^{r t}, y = d_1 e^{\lambda t} \cos(\omega t) + d_2 e^{\lambda t} \sin(\omega t)$