Your Name

Student ID	#
------------	---

In these problems, check all that apply.

1. Consider the differential equation

$$\frac{1}{2}y'' + y' + y = 1$$

This equation...

- \bigcirc is linear \bigcirc is non-linear
- \bigcirc is first order \bigcirc is second order
- is homogeneous is non-homogeneous
- \bigcirc has constant coefficients \bigcirc has non-constant coefficients

) is an initial value problem The characteristic equation...

 \bigcirc has distinct real roots \bigcirc has repeated roots

 \bigcirc has complex roots \bigcirc does not make sense

The general solution to this equation can be found using...

 \bigcirc reduction of order, with $y_1 =$ _____

 \bigcirc variation of parameters, with $y_1 =$ _____, $y_2 =$ ______

- \bigcirc undetermined coefficients, with $Y = _$
- $\bigcirc\,$ none of the above
- 2. Consider

$$y'' - \frac{2}{t^2}y = 0,$$
 $y(1) = 1, y'(1) = 2,$ $t > 0.$

This equation...

- \bigcirc is linear \bigcirc is non-linear
- \bigcirc is first order \bigcirc is second order
- \bigcirc is homogeneous \bigcirc is non-homogeneous
- \bigcirc has constant coefficients \bigcirc has non-constant coefficients
- \bigcirc is an initial value problem

The characteristic equation...

- \bigcirc has distinct real roots \bigcirc has repeated roots
- \bigcirc has complex roots \bigcirc does not make sense

The solution to this problem can be found using...

 \bigcirc reduction of order, with $y_1 = t^2$

- \bigcirc variation of parameters, with $y_1 = t^3$, $y_2 = t^4$
- \bigcirc undetermined coefficients, with $Y(t) = At^2$
- \bigcirc none of the above