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Your Name Student ID #

In these problems, you may use the following table of selected Laplace transform identities:

f(t) = L−1 {F (s)} F (s) = L{f(t)}
f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)
tf(t) −F ′(s)

eat cos(bt) s−a
(s−a)2+b2

eat sin(bt) b
(s−a)2+b2

1. Don’t panic—it’s not as bad as it looks. In this problem, you are given the proof of a
Laplace transform identity and are asked to describe what happened in some of the steps. The
identity is
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What happened in each of the labeled steps? That is, what justifies the labeled equalities?

1

2

3

4

(Note: assume that all terms—integrals, limits, Laplace transforms, etc.—exist and the
identities in the table apply. Generally ignore technical conditions, like continuity or
convergence.)
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2. Solve the following initial value problem using the Laplace transform:

y′′′ = y, y′′(0) = 0, y′(0) = 1, y(0) = 0.

If you use partial fractions, you do not need to solve for the constants.

Hint: s3 − 1 = (s− 1)(s2 + s+ 1) = (s− 1)((s+ 1
2
)2 + 3

4
).


