Math 308 M	Final	Spring 2015
Your Name	Student ID #	

- Do not open this exam until you are told to begin. You will have 1 hour and 50 minutes for the exam.
- Check that you have a complete exam. There are 7 questions for a total of 110 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	21	
2	21	
3	18	
4	12	
5	12	
6	11	
7	15	
Total:	110	

- (a) (2 points) There are infinitely many one-dimensional subspaces of ℝ².
 True False
- (b) (2 points) If A is $n \times n$, then the reduced row echelon form of A is I_n . \bigcirc True \bigcirc False
- (c) (2 points) If A and B are $n \times n$ and $det(AB) \neq 0$, then A and B are row equivalent. \bigcirc True \bigcirc False
- (d) (2 points) Let A be $m \times n$. Then $A^T A$ is symmetric if and only if m = n. (Recall that X is symmetric if $X = X^T$.)
 - \bigcirc True \bigcirc False
- (e) (2 points) A nonsingular matrix can have 0 as an eigenvalue.
 - \bigcirc True \bigcirc False
- (f) (2 points) If $S \subset \mathbb{R}^4$ is a subspace of dimension 2, then every $\mathbf{x} \in \mathbb{R}^4$ is in either S or S^{\perp} . \bigcirc True \bigcirc False
- (g) (2 points) Let A be an $n \times n$ matrix with (distinct) eigenvalues $\lambda_1, \ldots, \lambda_k$ and eigenspaces S_1, \ldots, S_k . Then dim $S_1 + \cdots + \dim S_k \leq n$. \bigcirc True \bigcirc False
- (h) (2 points) A subspace $S \neq \{0\}$ can have a finite number of vectors. \bigcirc True \bigcirc False
- (i) (3 points) Give the definition of "subspace."

(j) (2 points) Give the definition of "basis."

- 2. Provide examples meeting the given requirements. Unlike on the midterms, you **must justify** your answers on this question.
 - (a) (4 points) Give a 3×3 matrix which has π as an eigenvalue where the π -eigenspace has dimension 3.

(b) (4 points) Find A and B where $det(A + B) \neq det(A) + det(B)$.

(c) (5 points) Find a 3×3 matrix A where $A^3 = 0$ but $A^2 \neq 0$. (Hint: triangular matrices.)

(d) (4 points) Find a matrix whose characteristic polynomial is $(1 - \lambda)(2 - \lambda)^2(3 - \lambda)^3$.

(e) (4 points) Give an example of a one-to-one linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ together with another linear transformation $U: \mathbb{R}^m \to \mathbb{R}^n$ where $U \circ T: \mathbb{R}^n \to \mathbb{R}^n$ is the identity, i.e. $U(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. 3. Prove each of the following statements. Hint: each part is independent of the others unless stated otherwise.

(a) (2 points) Let A be a square matrix. Show that $A^3 - I = (A - I)(A^2 + A + I)$.

(b) (2 points) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are (column) vectors, show that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

(c) (5 points) Show that if λ is an eigenvalue of $A^T A$, then $\lambda \ge 0$. (Hint: if **v** is an eigenvector of $A^T A$ with eigenvalue λ , show that $\lambda |\mathbf{v}|^2 = (A^T A \mathbf{v}) \cdot \mathbf{v} = (A \mathbf{v}) \cdot (A \mathbf{v}) \ge 0$ using (b) twice.)

that $PAP^{-1} - \lambda I = P(A - \lambda I)P^{-1}$

Page 5 of 10

(e) (3 points) Let A and P be $n \times n$ matrices with P invertible. Use (d) to show that A and PAP^{-1} have the same characteristic polynomial.

(f) (4 points) Suppose X and Y are square matrices which commute, meaning XY = YX. Show that if $\mathbf{u} \in \text{null}(X)$, then $Y\mathbf{u} \in \text{null}(X)$. 4. Let

$$A := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}.$$

(a) (4 points) Compute det(A). Is A invertible?

(b) (4 points) Let L be the lower triangular matrix above and let U be the upper triangular matrix, so A = LU. Show that null(A) = null(U). (Hint: L is invertible.)

(c) (4 points) Show that U is an echelon form of A. Find a basis for null(A).

5. (a) (5 points) Let A be a 2×2 matrix where

$$A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}, \qquad A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}2\sqrt{2}\\0\end{bmatrix}.$$

What is A?

(b) (3 points) Find bases \mathcal{B} and \mathcal{C} of \mathbb{R}^2 such that the matrix A from (a) is the change of basis matrix from \mathcal{B} to \mathcal{C} . (If you did not solve (a), you may replace A with your own 2×2 matrix.)

(c) (4 points) Find the change of basis matrix from the basis

$$\left\{ \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 2\sqrt{2}\\0 \end{bmatrix} \right\}$$
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}.$$

to the basis

6. Let

$$A = \begin{bmatrix} 0 & 0 & -2 & -1 \\ 1 & 1 & 6 & 5 \\ 2 & 0 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(a) (4 points) Compute the characteristic polynomial of A directly. (Hint: the eigenvalues of A are 1 and 2.)

(b) (5 points) Compute a basis for the eigenspace of 1.

(c) (2 points) Let
$$\mathbf{x} = \begin{bmatrix} 1\\ 1\\ -1\\ 1 \end{bmatrix}$$
. Compute $A^{100}\mathbf{x}$.

7. The following is a basis for \mathbb{R}^3 :

$$\left\{ \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\5\\5 \end{bmatrix} \right\}.$$

(a) (5 points) Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for \mathbb{R}^3 where $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

(b) (3 points) Find an ortho**normal** basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 where $\mathbf{u}_1 \cdot \mathbf{v}_1 = |\mathbf{u}_1| |\mathbf{v}_1|$ where \mathbf{v}_1 is as in (a).

(d) (4 points) Find a least squares solution $\hat{\mathbf{x}}$ to the system $A\mathbf{x} = \mathbf{y}$ given by

1	0	0		[3]
0	0	0		1
0	1	0	$\mathbf{x} =$	4
0	0	0		1
0	0	1		5

Are there any other least squares solutions?