Math 308 M	Final	Spring 2015			
Your Name	Student ID #	Student ID $\#$			

- Do not open this exam until you are told to begin. You will have 1 hour and 50 minutes for the exam.
- Check that you have a complete exam. There are 7 questions for a total of 110 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	21	
2	21	
3	18	
4	12	
5	12	
6	11	
7	15	
Total:	110	

Final

- 1. Multiple choice and short answer. For these questions, you are **not required to show any work**.
 - (a) (2 points) There are infinitely many one-dimensional subspaces of \mathbb{R}^2 .
 - $\sqrt{\text{True}}$ \bigcirc False

Solution: Infinitely many such subspaces are given as span $\left\{ \begin{bmatrix} 1 \\ t \end{bmatrix} \right\}$ for $t \in \mathbb{R}$.

(b) (2 points) If A is $n \times n$, then the reduced row echelon form of A is I_n . \bigcirc True \checkmark False

Solution: 0 is its own reduced row echelon form.

(c) (2 points) If A and B are $n \times n$ and $\det(AB) \neq 0$, then A and B are row equivalent. $\sqrt{\text{True}}$ \bigcirc False

Solution: $det(AB) = det(A) det(B) \neq 0$, so A and B are invertible. Invertible square matrices row reduce to the identity, so are row equivalent.

- (d) (2 points) Let A be $m \times n$. Then $A^T A$ is symmetric if and only if m = n. (Recall that X is symmetric if $X = X^T$.)
 - \bigcirc True \checkmark False

Solution: $(A^T A)^T = A^T (A^T)^T = A^T A$, regardless of the size of A.

- (e) (2 points) A nonsingular matrix can have 0 as an eigenvalue.
 - \bigcirc True \checkmark False

Solution: A nonsingular matrix is a square matrix which is invertible. By the big theorem, such a matrix cannot have 0 as an eigenvalue.

(f) (2 points) If $S \subset \mathbb{R}^4$ is a subspace of dimension 2, then every $\mathbf{x} \in \mathbb{R}^4$ is in either S or S^{\perp} . \bigcirc True $\sqrt{$ False

Solution: Let $S = \operatorname{span}\{\mathbf{e}_1\} \subset \mathbb{R}^2$, so $S^{\perp} = \operatorname{span}\{\mathbf{e}_2\}$. Then $\mathbf{e}_1 + \mathbf{e}_2$ is in neither S nor S^{\perp} .

(g) (2 points) Let A be an $n \times n$ matrix with (distinct) eigenvalues $\lambda_1, \ldots, \lambda_k$ and eigenspaces S_1, \ldots, S_k . Then dim $S_1 + \cdots + \dim S_k \leq n$. $\sqrt{\text{True}}$ \bigcirc False

Solution: dim S_i is less than or equal to the multiplicity of λ_i in the characteristic polynomial of A, so adding up all of these gives at most n.

(h) (2 points) A subspace $S \neq \{0\}$ can have a finite number of vectors. \bigcirc True \checkmark False **Solution:** Such a subspace has at least one non-zero vector, and it has all multiples of that vector, of which there are infinitely many.

(i) (3 points) Give the definition of "subspace."

Solution: A subspace S of \mathbb{R}^n is a subset of \mathbb{R}^n which contains **0** and is closed under addition and scalar multiplication.

(j) (2 points) Give the definition of "basis."

Solution: A basis is a linearly independent spanning set for some given subspace.

2. Provide examples meeting the given requirements. Unlike on the midterms, you **must justify** your answers on this question.

Final

(a) (4 points) Give a 3×3 matrix which has π as an eigenvalue where the π -eigenspace has dimension 3.

Solution: The only example is πI_3 . It clearly scales all inputs by π , so the π eigenspace is \mathbb{R}^3 which has dimension 3.

(b) (4 points) Find A and B where $det(A + B) \neq det(A) + det(B)$.

Solution: Almost everything is a counterexample. For instance,

$$\det \left(\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \right) = \det \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = 2$$
$$\neq 0 = 0 + 0 = \det \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}.$$

(c) (5 points) Find a 3×3 matrix A where $A^3 = 0$ but $A^2 \neq 0$. (Hint: triangular matrices.)

Solution: The simplest example is probably

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

since

$$A^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$A^{3} = A^{2}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Final

(d) (4 points) Find a matrix whose characteristic polynomial is $(1 - \lambda)(2 - \lambda)^2(3 - \lambda)^3$.

Solution: Any triangular matrix with diagonal entries 1, 2, 2, 3, 3, 3 has this property. For instance, $\det \begin{bmatrix} 1-\lambda & 0 & 0 & 0 & 0 & 0 \\ 0 & 2-\lambda & 0 & 0 & 0 & 0 \\ 0 & 0 & 2-\lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & 3-\lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 3-\lambda & 0 \\ 0 & 0 & 0 & 0 & 3-\lambda & 0 \\ 0 & 0 & 0 & 0 & 3-\lambda \end{bmatrix} = (1-\lambda)(2-\lambda)^2(3-\lambda)^3.$

(e) (4 points) Give an example of a one-to-one linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ together with another linear transformation $U: \mathbb{R}^m \to \mathbb{R}^n$ where $U \circ T: \mathbb{R}^n \to \mathbb{R}^n$ is the identity, i.e. $U(T(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$.

Solution: The simplest example is to let U = T be the identity on \mathbb{R}^1 . Another example is "inclusion" of \mathbb{R}^1 into \mathbb{R}^2 as the *x*-axis followed by "projection" of \mathbb{R}^2 onto the *x*-axis, namely

$$T\left(\begin{bmatrix} x \end{bmatrix}\right) := \begin{bmatrix} x \\ 0 \end{bmatrix}, \qquad U\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) := \begin{bmatrix} x \end{bmatrix}, \qquad \text{so} \qquad U \circ T\left(\begin{bmatrix} x \\ 0 \end{bmatrix}\right) = U\left(\begin{bmatrix} x \\ 0 \end{bmatrix}\right) = \begin{bmatrix} x \end{bmatrix}.$$

3. Prove each of the following statements. Hint: each part is independent of the others unless stated otherwise.

(a) (2 points) Let A be a square matrix. Show that $A^3 - I = (A - I)(A^2 + A + I)$.

Solution: We compute

$$(A - I)(A2 + A + I) = A3 + A2 + A - A2 - A - I = A3 - I.$$

(b) (2 points) If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are (column) vectors, show that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$.

Solution: We compute

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \cdot \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + \dots + u_n v_n = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \mathbf{u}^T \mathbf{v}.$$

(c) (5 points) Show that if λ is an eigenvalue of $A^T A$, then $\lambda \ge 0$. (Hint: if **v** is an eigenvector of $A^T A$ with eigenvalue λ , show that $\lambda |\mathbf{v}|^2 = (A^T A \mathbf{v}) \cdot \mathbf{v} = (A \mathbf{v}) \cdot (A \mathbf{v}) \ge 0$ using (b) twice.)

Solution: As the hint suggests, we compute

$$\lambda |\mathbf{v}|^2 = (\lambda \mathbf{v}) \cdot \mathbf{v} = (A^T A \mathbf{v}) \cdot \mathbf{v}$$
$$= (A^T A \mathbf{v})^T \mathbf{v} = \mathbf{v}^T A^T A \mathbf{v}$$
$$= (A \mathbf{v})^T (A \mathbf{v}) = (A \mathbf{v}) \cdot (A \mathbf{v}) \ge 0.$$

Hence $\lambda |\mathbf{v}|^2 \ge 0$, so since $\mathbf{v} \neq \mathbf{0}$, we have $\lambda \ge 0$.

(d) (2 points) Let A and P be $n \times n$ matrices with P invertible and let λ be a scalar. Show that $PAP^{-1} - \lambda I = P(A - \lambda I)P^{-1}$

Solution: We compute

$$P(A - \lambda I)P^{-1} = PAP^{-1} - \lambda PIP^{-1} = PAP^{-1} - \lambda I.$$

(e) (3 points) Let A and P be $n \times n$ matrices with P invertible. Use (d) to show that A and PAP^{-1} have the same characteristic polynomial.

Solution: Using (d), we see

$$\det(PAP^{-1} - \lambda I) = \det(P(A - \lambda I)P^{-1}) = \det(P)\det(A - \lambda I)\det(P)^{-1} = \det(A - \lambda I).$$

(f) (4 points) Suppose X and Y are square matrices which commute, meaning XY = YX. Show that if $\mathbf{u} \in \text{null}(X)$, then $Y\mathbf{u} \in \text{null}(X)$.

Solution: We compute

$$X(Y\mathbf{u}) = (XY)\mathbf{u} = (YX)\mathbf{u} = Y(X\mathbf{u}) = Y\mathbf{0} = \mathbf{0}.$$

4. Let

$$A := \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}.$$

(a) (4 points) Compute det(A). Is A invertible?

Solution: The determinant of the product is the product of the determinants. The determinant of a triangular matrix is the product of the entries on the diagonal. So, the determinant is $(1^3)(1 \cdot -3 \cdot 0) = 0$. Since the determinant is zero, A is not invertible.

(b) (4 points) Let L be the lower triangular matrix above and let U be the upper triangular matrix, so A = LU. Show that null(A) = null(U). (Hint: L is invertible.)

Solution: Note that *L* is invertible (for instance, it has determinant 1). Then $A\mathbf{x} = \mathbf{0}$ iff $LU\mathbf{x} = \mathbf{0}$ iff $L^{-1}LU\mathbf{x} = L^{-1}\mathbf{0}$, which says $U\mathbf{x} = \mathbf{0}$.

(c) (4 points) Show that U is an echelon form of A. Find a basis for null(A).

Solution: Since $\operatorname{null}(U) = \operatorname{null}(A)$ and U and A have the same size, they have the same reduced echelon form by the proof examples document. Alternatively, it is easy to row reduce A to U.

We can find a basis for null(A) by finding a basis for null(U). We compute

$$U \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

so reading off the general solution gives

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s \\ -2s \\ s \end{bmatrix} = s \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix},$$

giving basis

$$\left\{ \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \right\}.$$

5. (a) (5 points) Let A be a 2×2 matrix where

$$A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\4\end{bmatrix}, \qquad A\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}2\sqrt{2}\\0\end{bmatrix}.$$

What is A?

Solution: We compute $A \begin{bmatrix} 1\\0 \end{bmatrix} = \frac{1}{2}A \left(\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix} \right) = \frac{1}{2} \left(\begin{bmatrix} 2\\4 \end{bmatrix} + \begin{bmatrix} 2\sqrt{2}\\0 \end{bmatrix} \right) = \begin{bmatrix} 1+\sqrt{2}\\2 \end{bmatrix}.$ $A \begin{bmatrix} 0\\1 \end{bmatrix} = \frac{1}{2}A \left(\begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} 1\\-1 \end{bmatrix} \right) = \frac{1}{2} \left(\begin{bmatrix} 2\\4 \end{bmatrix} - \begin{bmatrix} 2\sqrt{2}\\0 \end{bmatrix} \right) = \begin{bmatrix} 1-\sqrt{2}\\2 \end{bmatrix}.$ Hence $A = \begin{bmatrix} 1+\sqrt{2} & 1-\sqrt{2}\\2 & 2 \end{bmatrix}.$

(b) (3 points) Find bases \mathcal{B} and \mathcal{C} of \mathbb{R}^2 such that the matrix A from (a) is the change of basis matrix from \mathcal{B} to \mathcal{C} . (If you did not solve (a), you may replace A with your own 2×2 matrix.)

Solution: An invertible matrix can always be viewed as a change of basis matrix from the basis consisting of the columns of that matrix to the standard basis. A is clearly invertible.

(c) (4 points) Find the change of basis matrix from the basis

$$\left\{ \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 2\sqrt{2}\\0 \end{bmatrix} \right\}$$
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}.$$

to the basis

Solution: From class, this matrix is

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 2\sqrt{2} \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 3 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix}.$$

6. Let

$$A = \begin{bmatrix} 0 & 0 & -2 & -1 \\ 1 & 1 & 6 & 5 \\ 2 & 0 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) (4 points) Compute the characteristic polynomial of A directly. (Hint: the eigenvalues of A are 1 and 2.)

Solution: We expand $A - \lambda I$ along the second column and expand along the third row afterwards:

$$det(A - \lambda I) = det \begin{bmatrix} -\lambda & 0 & -2 & -1 \\ 1 & 1 - \lambda & 6 & 5 \\ 2 & 0 & 4 - \lambda & 1 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda) det \begin{bmatrix} -\lambda & -2 & -1 \\ 2 & 4 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(1 - \lambda)(-\lambda(4 - \lambda) + 4)$$
$$= (1 - \lambda)^{2}(\lambda^{2} - 4\lambda + 4) = (1 - \lambda)^{2}(2 - \lambda)^{2}.$$

(b) (5 points) Compute a basis for the eigenspace of 1.

Solution: We must compute (A - I). We row reduce as usual: $A - I = \begin{bmatrix} -1 & 0 & -2 & -1 \\ 1 & 0 & 6 & 5 \\ 2 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ which gives solutions $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} s_2 \\ s_1 \\ -s_2 \\ s_2 \end{bmatrix} = s_1 \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + s_2 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$ so we have a basis $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$

(c) (2 points) Let $\mathbf{x} = \begin{bmatrix} 1\\ 1\\ -1\\ 1 \end{bmatrix}$. Compute $A^{100}\mathbf{x}$.

Solution: Clearly x is in the 1-eigenspace. Hence $A\mathbf{x} = \mathbf{x}$, so $A^{100}\mathbf{x} = \mathbf{x}$.

7. The following is a basis for \mathbb{R}^3 :

$$\left\{ \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\5\\5 \end{bmatrix} \right\}.$$

(a) (5 points) Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ for \mathbb{R}^3 where $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$.

Solution: We apply Gram-Schmidt after reordering the above vectors; say they are $\mathbf{s}_2, \mathbf{s}_1, \mathbf{s}_3$, respectively. Now

$$\mathbf{v}_1 = \mathbf{s}_1$$

$$\mathbf{v}_2 = \mathbf{s}_2 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{s}_2$$

$$\mathbf{v}_3 = \mathbf{s}_3 - \operatorname{proj}_{\mathbf{v}_1} \mathbf{s}_3 - \operatorname{proj}_{\mathbf{v}_2} \mathbf{s}_3$$

which works out to be

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
$$\mathbf{v}_{2} = \begin{bmatrix} 4\\2\\1 \end{bmatrix} - \frac{6}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$$
$$\mathbf{v}_{3} = \begin{bmatrix} 3\\5\\5 \end{bmatrix} - \frac{8}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} = \begin{bmatrix} -2\\2\\4 \end{bmatrix}.$$

(b) (3 points) Find an ortho**normal** basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 where $\mathbf{u}_1 \cdot \mathbf{v}_1 = |\mathbf{u}_1| |\mathbf{v}_1|$ where \mathbf{v}_1 is as in (a).

Solution: Simply divide each vector from (a) by its magnitude: $\mathbf{u}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad \mathbf{u}_2 = \frac{\mathbf{v}_2}{|\mathbf{v}_2|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \qquad \mathbf{u}_3 = \frac{\mathbf{v}_3}{|\mathbf{v}_3|} = \frac{1}{\sqrt{24}} \begin{bmatrix} -2\\2\\4 \end{bmatrix}.$ (c) (3 points) Let S be span{ $\mathbf{e}_1, \mathbf{e}_3, \mathbf{e}_5$ } $\subset \mathbb{R}^5$ and let $\mathbf{y} = \begin{bmatrix} 3\\1\\4\\1\\5 \end{bmatrix}$. Compute $\operatorname{proj}_S \mathbf{y}$.

Solution: Using the formula from class (or geometric intuition) immediately gives $\operatorname{proj}_{S} \mathbf{y} = \begin{bmatrix} 3\\ 0\\ 4\\ 0\\ 5 \end{bmatrix}.$

- (d) (4 points) Find a least squares solution $\hat{\mathbf{x}}$ to the system $A\mathbf{x} = \mathbf{y}$ given by
 - $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ 4 \\ 1 \\ 5 \end{bmatrix}.$

Are there any other least squares solutions?

Solution: We can use either the original definition of least squares solutions or we can solve the normal equations in this case since we've computed $\hat{\mathbf{y}}$.

The original definition: solve $A\mathbf{x} = \hat{\mathbf{y}}$. The columns of A are linearly independent, so there is at most one solution, and $\hat{\mathbf{y}} = 3\mathbf{e}_1 + 4\mathbf{e}_3 + 5\mathbf{e}_5$, giving a unique solution of

$$\widehat{\mathbf{x}} = \begin{bmatrix} 3\\4\\5 \end{bmatrix}.$$

Normal equations: solve $A^T A \mathbf{x} = A^T \mathbf{y}$, so solve

1	0	0		3	
0	1	0	$\mathbf{x} =$	4	,
0	0	1		5	

which gives the same answer as before as well as uniqueness.