Math 308 M	Midterm 2	Spring 2015
Your Name	Student ID #	

- Do not open this exam until you are told to begin. You will have 50 minutes for the exam.
- Check that you have a complete exam. There are 5 questions for a total of 54 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	18	
2	11	
3	8	
4	9	
5	8	
Total:	54	

- 1. Multiple choice and short answer. For these questions, you are **not required to show any work**.
 - (a) (2 points) Every subspace is the row space of some matrix.
 - \bigcirc True \bigcirc False
 - (b) (2 points) If A and B are invertible $n \times n$ matrices, then $(A + B)^{-1} = A^{-1} + B^{-1}$. \bigcirc True \bigcirc False
 - (c) (2 points) If A is $m \times n$, then nullity(A) nullity(A^T) = n m. \bigcirc True \bigcirc False
 - (d) (4 points) Let A, B be $n \times n$ matrices, let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, and let s, t be scalars. Which of the following are *always true*? (Check all that apply.)
 - $\bigcirc A(s\mathbf{u} + t\mathbf{v}) = sA\mathbf{u} + tA\mathbf{v}. \quad \bigcirc (AB)^2 = A^2B^2.$
 - $(A + B)^2 = A^2 + 2AB + B^2$. $(A + B)^2 = 0$.
 - $\bigcirc A^2 = A$ implies A(A I) = 0, so either A = I or A = 0.
 - (e) (4 points) Give an example of two subspaces S_1 and S_2 of \mathbb{R}^4 each of dimension 2 but where the only vector belonging to both S_1 and S_2 is **0**.

(f) (4 points) Give an example of two linear functions $T : \mathbb{R}^n \to \mathbb{R}^m$ and $U : \mathbb{R}^m \to \mathbb{R}^\ell$ such that T is one-to-one, range $T = \ker U$, and U is onto. *Hint:* In your example, you'll find $m = n + \ell$.

2. Let A be the following 3×5 matrix. Its reduced echelon form B is provided.

$$A = \begin{bmatrix} 1 & 1 & 7 & 0 & 0 \\ 3 & 1 & 15 & 6 & 0 \\ 0 & 2 & 6 & 3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 & 0 & -3 \\ 0 & 1 & 3 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = B.$$

(a) (3 points) Compute rank(A), dim row(A), dim col(A), and nullity(A).

(b) (8 points) Find bases for row(A), col(A), and null(A).

3. Let A be the following 3×3 matrix:

$$A = \begin{bmatrix} 1 & 4 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) (5 points) Compute A^{-1} .

(b) (3 points) Show that A^T is invertible, with $(A^T)^{-1} = (A^{-1})^T$.

4. Fix a 2×2 matrix A. Let $Q \colon \mathbb{R}^2 \to \mathbb{R}$ be the function given by

$$Q(\mathbf{x}) := \mathbf{x}^T A \mathbf{x}.$$
(a) (3 points) If $A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, show directly that
$$Q(\mathbf{x}) = ax^2 + 2bxy + cy^2.$$

(b) (3 points) Show that $Q(s\mathbf{x}) = s^2 Q(\mathbf{x})$ for all scalars s.

(c) (3 points) Find a matrix A and vectors $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^2$ such that $Q(\mathbf{x}_1 + \mathbf{x}_2) \neq Q(\mathbf{x}_1) + Q(\mathbf{x}_2)$.

5. In this question, you are given a proof and are asked to provide justification for individual steps. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation throughout.

Midterm 2

Proposition. If T is onto, then there is a linear transformation $U: \mathbb{R}^m \to \mathbb{R}^n$ such that

$$T(U(\mathbf{x})) = \mathbf{x}$$
 for all $\mathbf{x} \in \mathbb{R}^m$.

Proof. Pick $\mathbf{y}_1, \ldots, \mathbf{y}_m$ as in (a), so $T(\mathbf{y}_i) = \mathbf{e}_i$. Pick U as in (b), so $U(\mathbf{e}_i) = \mathbf{y}_i$. Then

$$T(U(\mathbf{e}_i)) = T(\mathbf{y}_i) = \mathbf{e}_i.$$

By (c), $T(U(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^m$.

Hint: Parts (a)-(c) are independent of each other.

(a) (1 point) Show that if T is onto, then there are $\mathbf{y}_1, \ldots, \mathbf{y}_m \in \mathbb{R}^n$ such that $T(\mathbf{y}_i) = \mathbf{e}_i$.

(b) (3 points) Show that, given $\mathbf{y}_1, \ldots, \mathbf{y}_m$ in \mathbb{R}^n , there is some linear transformation $U \colon \mathbb{R}^m \to \mathbb{R}^n$ with

$$U(\mathbf{e}_i) = \mathbf{y}_i$$
 for $i = 1, \dots, m$.

(c) (4 points) Show that if $U: \mathbb{R}^m \to \mathbb{R}^n$ is linear and $T(U(\mathbf{e}_i)) = \mathbf{e}_i$ for all $\mathbf{e}_i \in \mathbb{R}^m$, then $T(U(\mathbf{x})) = \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^m$.