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Abstract. This document summarizes diagonalization. A fuller account can be found in
Holt, §6.4.

1. Diagonalization

Definition 1. An n× n matrix A is diagonalizable if there is a basis of Rn consisting of
eigenvectors of A.

Example 2. A diagonal matrix D = diag(d1, . . . , dn) has eigenvectors e1, . . . , en with eigen-
values d1, . . . , dn, so D is diagonalizable.

Example 3. If A has n distinct eigenvalues, their corresponding eigenvectors are linearly
independent, so they form a basis, so A is diagonalizable.

Theorem 4. An n× n matrix A is diagonalizable if and only if there is a diagonal matrix
D and an invertible matrix P such that

A = PDP−1.

In this case, if the columns of P are given by P = [v1 · · · vn] and the diagonal entries
of D are given by D = diag(d1, . . . , dn), then {v1, . . . ,vn} is a basis of Rn consisting of
eigenvectors of A, and the eigenvalue of vi is di.

Proof. First suppose A = PDP−1 with D diagonal and P invertible, as above. Since P is
invertible, its columns form a basis for Rn, namely {v1, . . . ,vn}. We can pick off the columns
of P via Pei = vi, so ei = P−1vi. We verify that vi indeed is an eigenvector of A with
eigenvalue di:

Avi = PDP−1vi = PDei = Pdiei = diPei = divi.

Hence A has a basis of eigenvectors, so is diagonalizable.

Now suppose A is diagonalizable. Pick a basis of eigenvectors {v1, . . . ,vn} for Rn with
eigenvalues d1, . . . , dn and set P := [v1 · · · vn] and D := diag(d1, . . . , dn). P is evidently
invertible and D is diagonal, so we must only show that A = PDP−1. The above computation
shows that PDP−1 has eigenvectors {v1, . . . ,vn} with eigenvalues d1, . . . , dn, so PDP−1vi =
divi. By construction the same holds for A, namely Avi = divi. The linear transformations of
PDP−1 and A thus agree on a basis, so they agree everywhere, so PDP−1 = A. Alternatively,
(A−PDP−1)vi = 0, so the 0-eigenspace of A−PDP−1 has dimension at least n, so A−PDP−1
must be the zero matrix. �
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Remark 5. Since A = PDP−1, we have P−1AP = D. Multiplying by P−1 on the left and
P on the right is really computing A “in the basis of eigenvectors”, and in that basis A
is diagonal. More formally, P is the change of basis matrix from the basis of eigenvectors
B := {v1, . . . ,vn} to the standard basis S and P−1 is the change of basis matrix from S to
B. Hence if x ∈ Rn we have

(P−1AP )xB = P−1AxS = P−1(Ax) = [Ax]B.

Compare this to (A)xS = (Ax)S , which says that A takes in coordinate vectors with respect
to the standard basis and returns coordinate vectors with respect to the standard basis.
On the other hand, (P−1AP )xB = [Ax]B says that P−1AP takes in coordinate vectors with
respect to basis B and returns coordinate vectors with respect to basis B.

Remark 6. One of the main uses of diagonalization is to quickly compute powers of a matrix,
which is essentially what happened in the Fibonacci number example from lecture. Indeed,
if A = PDP−1, then A2 = (PDP−1)(PDP−1) = PDDP−1 = PD2P−1, and more generally
Ak = PDkP−1 for any k ≥ 0 (and also any k < 0 if A or equivalently D is invertible).
Computing powers of a diagonal matrix is easy since diag(d1, . . . , dn)k = diag(dk1, . . . , d

k
n).

Example 7. We can rephrase the Fibonacci computation from class in this language. With
F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn, we showed that[

1 1
1 0

]n [
1
0

]
=

[
Fn+1

Fn

]
.

We found a basis of eigenvectors for the matrix on the left-hand side, which using the theorem
shows that [

1 1
1 0

]n
=

[
φ φ
1 1

] [
φn 0

0 φ
n

] [
φ φ
1 1

]−1
where φ := (1 +

√
5)/2 and φ := (1−

√
5)/2. Combining these two observations immediately

gives Binet’s formula.
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