Math 308 I/J	Final			Autumn 2016		
Your Name	Student ID $\#$					

- Do not open this exam until you are told to begin. You will have 1 hour, 50 minutes for the exam.
- Check that you have a complete exam. There are 8 questions for a total of 117 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	21	
2	13	
3	12	
4	18	
5	12	
6	14	
7	15	
8	12	
Total:	117	

Final

- 1. For true/false and multiple choice questions, you are not required to show any work.
 - (a) (1 point) Any linearly independent set in \mathbb{R}^n spans \mathbb{R}^n .
 - \bigcirc True \checkmark False
 - (b) (1 point) Is $A^T A$ symmetric? $\sqrt{\text{ always}}$ \bigcirc never \bigcirc only if A is square
 - (c) (4 points) Check all of the following properties of determinants which are *always true*. A, B are $n \times n$ matrices, B is invertible, and c is a scalar.

 $\sqrt{\det(A)} = \det(A^T) \qquad \bigcirc \det(A^2 + I) = \det(A)^2 + 1 \qquad \bigcirc \det(cA) = c \det(A) \\ \sqrt{\det(B^{-1})^{-1}} = \det(B) \qquad \sqrt{\det(AB)} = \det(A^T B^T) \qquad \bigcirc \det(A + B) = \det(A) + \det(B)$

(d) (4 points) Define **two** of the following three terms: basis, dimension of a subspace, eigenvector. (Clearly specify which terms you are defining.)

Solution:

- Basis: given a subspace S, a basis for S is a linearly independent set spanning S.
- Dimension: given a subspace S, the size of any basis for S is the dimension of S.
- Eigenvector: given a (square) matrix A, an eigenvector \vec{v} of A is any non-zero vector \vec{v} where $A\vec{v} = \lambda \vec{v}$ for some scalar λ .
- (e) (4 points) Suppose a matrix A satisfies $A^3 + A = I$. Show that A is non-singular (i.e. invertible).

Solution: A must be square for A^3 to be defined. If A were singular, by the Big Theorem, $\operatorname{null}(A) \neq 0$, i.e. there is some $\vec{0} \neq \vec{v}$ such that $A\vec{v} = \vec{0}$. But then

$$\vec{0} = \vec{0} + \vec{0} = A^3 \vec{v} + A \vec{v} = I \vec{v} = \vec{v},$$

a contradiction. Hence A must be non-singular.

Alternate argument: $A(A^2 + I) = I$, so $A^{-1} = A^2 + I$ exists and A is invertible.

(f) (4 points) Suppose

$$S = \left\{ \begin{bmatrix} c_1\\1+c_2\\-c_1 \end{bmatrix} : c_1, c_2 \in \mathbb{R} \right\} \subset \mathbb{R}^3.$$

Is S a subspace of \mathbb{R}^3 ?

Solution: Yes. Check the three conditions.

- $\vec{0} \in S$: use $c_1 = 0, c_2 = -1$.
- If $\vec{x}, \vec{y} \in S$, then $\vec{x} + \vec{y} \in S$:

$$\begin{bmatrix} c_1 \\ 1+c_2 \\ -c_1 \end{bmatrix} + \begin{bmatrix} d_1 \\ 1+d_2 \\ -d_1 \end{bmatrix} = \begin{bmatrix} c_1+c_2 \\ 1+(c_2+d_2+1) \\ -(c_1+d_2) \end{bmatrix}.$$

• If $\vec{x} \in S$, $t \in \mathbb{R}$, then $t\vec{x} \in S$:

$$t \begin{bmatrix} c_1 \\ 1 + c_2 \\ -c_1 \end{bmatrix} = \begin{bmatrix} tc_1 \\ 1 + (t + tc_2 - 1) \\ -(tc_1) \end{bmatrix}$$

Alternatively, S is the span of $\langle 1, 0, -1 \rangle$ and \vec{e}_2 , and spans are subspaces.

(g) (3 points) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation. Suppose the range of T is a line. Describe the kernel of T geometrically.

Solution: By the rank-nullity theorem, the kernel of T has dimension 2 - 1 = 1, so the kernel is a line.

- 2. Produce example(s) with the given properties. You are *not required* to give justification.
 - (a) (4 points) A square matrix A is called *orthogonal* if $A^T A = I$. It is a fact that if A is orthogonal, then det(A) = ±1. Give examples of orthogonal matrices B and C where det(B) = 1 and det(C) = -1.

Solution: There are many examples. For instance, take $B = I_n$ and $C = \text{diag}(-1, 1, 1, \dots, 1)$.

(b) (4 points) Give an example of three pairwise orthogonal vectors in \mathbb{R}^4 with no 0 coordinates.

Solution: There are many examples. For instance, take $\vec{u} = (1, 1, 1, 1)$, $\vec{v} = (1, 1, -1, -1)$, $\vec{w} = (-1, 1, -1, 1)$.

(c) (3 points) Give a linear transformation T whose corresponding matrix is non-zero and triangular, and where T is not onto.

Solution: There are many examples. For instance, $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T(\vec{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \vec{x}.$$

(d) (2 points) Give an example of a matrix with 4 distinct eigenvalues.

Solution: There are many examples. For instance, take diag(1, 2, 3, 4).

- 3. Produce example(s) with the given properties. You are *not required* to give justification.
 - (a) (4 points) Suppose $V = \{\vec{v}_1, \ldots, \vec{v}_n\} \subset \mathbb{R}^n$, $A = [\vec{v}_1 \cdots \vec{v}_n]$, and $T \colon \mathbb{R}^n \to \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Using this notation, give four of the equivalent conditions in the Big Theorem.

Solution: Possibilities include: V spans \mathbb{R}^n ; V is linearly independent; for all $\vec{b} \in \mathbb{R}^n$, $A\vec{x} = \vec{b}$ has a unique solution \vec{x} ; T is onto; T is one-to-one; A is invertible; $\ker(T) = \{\vec{0}\}$; V is a basis for \mathbb{R}^n ; $\operatorname{col}(A) = \mathbb{R}^n$; $\operatorname{row}(A) = \mathbb{R}^n$; $\operatorname{rank}(A) = n$; $\det(A) \neq 0$; $\lambda = 0$ is not an eigenvalue of A.

(b) (4 points) Give examples of two-dimensional subspaces S_1 and S_2 of \mathbb{R}^4 where $S_1 \neq S_2$ and where S_1 and S_2 contain some common non-zero vector.

Solution: One example is $S_1 = \operatorname{span}\{\vec{e}_1, \vec{e}_2\}, S_2 = \operatorname{span}\{\vec{e}_1, \vec{e}_3\}.$

(c) (4 points) Find some linear transformation T such that range T contains ker T and ker $T \neq \{\vec{0}\}$. (Hint: this can be done in two dimensions.)

Solution: One example is the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which sends $\vec{e_1}$ to $\vec{0}$ and $\vec{e_2}$ to $\vec{e_1}$. The corresponding matrix is

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

4. (a) (8 points) Let $S = \operatorname{span}\{\vec{s_1}, \vec{s_2}, \vec{s_3}\} \subset \mathbb{R}^4$ and $\vec{u} \in \mathbb{R}^4$ where

$$\vec{s}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \vec{s}_2 = \begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}, \quad \vec{s}_3 = \begin{bmatrix} 2\\2\\-1\\-2 \end{bmatrix}, \quad \vec{u} = \begin{bmatrix} 1\\2\\2\\-1\\-1 \end{bmatrix}.$$

Compute $\operatorname{proj}_{S} \vec{u}$.

Solution: Applying Gram-Schmidt to the basis $\{\vec{s}_1, \vec{s}_2, \vec{s}_3\}$ gives an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$, namely

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 0\\0\\-1\\-2 \end{bmatrix}.$$

Using the projection formula gives

$$\operatorname{proj}_{S} \vec{u} = \operatorname{proj}_{\vec{v}_{1}} \vec{u} + \operatorname{proj}_{\vec{v}_{2}} \vec{u} + \operatorname{proj}_{\vec{v}_{3}} \vec{u} = \frac{3}{2} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + \frac{-1}{2} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} + \frac{0}{5} \begin{bmatrix} 0\\0\\-1\\-2 \end{bmatrix} = \begin{bmatrix} 1\\2\\0\\0 \end{bmatrix}.$$

(b) (4 points) Let S be a subspace of \mathbb{R}^n . Suppose $\vec{u} \in S^{\perp}$. Show that $\operatorname{proj}_S \vec{u} = \vec{0}$.

Solution: Recall that $\operatorname{proj}_S \vec{u}$ is characterized by the property that

$$\operatorname{proj}_{S} \vec{u} \in S, \quad \vec{u} - \operatorname{proj}_{S} \vec{u} \in S^{\perp}.$$

Here we have $\vec{0} \in S$ and $\vec{u} - \vec{0} = \vec{u} \in S^{\perp}$, so that $\vec{0} = \text{proj}_S \vec{u}$.

Alternatively, suppose $\{\vec{v}_1, \ldots, \vec{v}_k\}$ is a basis for S. By Gram-Schmidt, we can assume our basis is orthogonal. Since $\vec{u} \in S^{\perp}$, we have $\vec{u} \cdot \vec{v}_i = 0$ for each i, so that $\operatorname{proj}_{\vec{v}_i} \vec{u} = \vec{0}$. From the projection formula, we then have

$$\operatorname{proj}_{S} \vec{u} = \operatorname{proj}_{\vec{v}_{1}} \vec{u} + \dots + \operatorname{proj}_{\vec{v}_{k}} \vec{u} = \vec{0}.$$

(c) (6 points) Suppose $S = \text{span}\{\vec{s}_1, \vec{s}_2\}$ where

$$\vec{s}_1 = \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix} \quad \vec{s}_2 = \begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}.$$

Compute a basis for S^{\perp} .

Solution: Recall that $\operatorname{null}(A) = \operatorname{row}(A)^{\perp}$. If A's rows are \vec{s}_1^T and \vec{s}_2^T , then $\operatorname{null}(A) = \operatorname{row}(A)^{\perp} = S^{\perp}$, so compute a basis for $\operatorname{null}(A)$. Row reducing gives

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -4 & -5 \\ 0 & 1 & 2 & 3 \end{pmatrix}.$$

so that the general solution of the corresponding homogeneous linear system is

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4s_1 + 5s_2 \\ -2s_1 - 3s_2 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 1 \\ 0 \end{bmatrix} s_1 + \begin{bmatrix} 5 \\ -3 \\ 0 \\ 1 \end{bmatrix} s_2.$$

Thus a basis is

$$\left\{ \begin{bmatrix} 5\\-3\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\-2\\1\\0 \end{bmatrix} \right\}$$

Final

5. (a) (2 points) What is the (smaller) angle between the vectors

$$\vec{u} = \begin{bmatrix} 0\\1\\2\\3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} -3\\2\\-1\\0 \end{bmatrix}$?

Solution: Their dot product is 0, so they form a 90° angle.

(b) (6 points) Show that $\operatorname{null}(A) \subset \operatorname{null}(A^T A)$. Conclude that $\operatorname{rank}(A) \geq \operatorname{rank}(A^T A)$.

Solution: If $\vec{x} \in \text{null}(A)$, then $A\vec{x} = \vec{0}$, so $A^T A \vec{x} = A^T \vec{0} = \vec{0}$, so $\vec{x} \in \text{null}(A^T A)$, giving the first part. Hence

 $\operatorname{nullity}(A) = \operatorname{dim}(\operatorname{null}(A)) \le \operatorname{dim}(\operatorname{null}(A^T A)) = \operatorname{nullity}(A^T A).$

Note that A and $A^T A$ have the same number of columns, say m. By the rank-nullity theorem,

$$m - \operatorname{rank}(A) \le m - \operatorname{rank}(A^T A)$$

so that rank $(A^T A) \leq \operatorname{rank}(A)$. (In fact, null $(A^T A) = \operatorname{null}(A)$, as follows. If $A^T A \vec{x} = \vec{0}$, then

$$|A\vec{x}|^{2} = (A\vec{x}).(A\vec{x}) = (A\vec{x})^{T}(A\vec{x}) = \vec{x}^{T}A^{T}A\vec{x} = \vec{x}^{T}\vec{0} = 0$$

so that $A\vec{x} = \vec{0}$. Using the same argument, it follows that $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.)

(c) (4 points) Find all least squares solutions to the system $A\vec{x} = \vec{y}$ where

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \vec{y} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Solution: We solve the normal equations $A^T A \vec{x} = A^T \vec{y}$. Since the columns of A are linearly independent, there is a unique solution, namely

$$\vec{x} = (A^T A)^{-1} A^T \vec{y} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Alternatively, the original system is consistent, the columns of A are linearly independent, and we can notice that the sum of the columns of A is \vec{y} . That is, $\hat{y} = \vec{y}$ and $A\vec{x} = \hat{y}$ has the suggested unique solution.

6. (a) (4 points) Consider the two linear systems $A\vec{x} = \vec{y}$ and $A\vec{u} = \vec{0}$. Suppose that \vec{x}_p is a solution to the first system. For any solution \vec{u} of the second system, show that $\vec{x} = \vec{x}_p + \vec{u}$ is a solution of the first system.

Solution: We have $A\vec{x}_p = \vec{y}$ and $A\vec{u} = \vec{0}$. Then

$$A\vec{x} = A(\vec{x}_p + \vec{u}) = A\vec{x}_p + A\vec{u} = \vec{y} + \vec{0} = \vec{y}.$$

(b) (5 points) Solve the two linear systems $A\vec{x} = \vec{u}$ and $A\vec{x} = \vec{v}$ where

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \quad \vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

(Hint: inverse.)

Solution: Row reduction gives

$$\begin{pmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 2 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 2 & 3 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -2 & 1 \end{pmatrix}$$

so the matrix is invertible, giving solutions

$$\vec{x} = A^{-1}\vec{u} = \begin{bmatrix} 5\\2\\-2\\-2\end{bmatrix}$$

and

$$\vec{x} = A^{-1}\vec{v} = \begin{bmatrix} 11\\2\\-6\end{bmatrix}$$

(c) (5 points) Let

$$\mathcal{B}_1 = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}, \quad \mathcal{B}_2 = \left\{ \begin{bmatrix} 0\\1\\4 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}.$$

Given that $\mathcal{B}_1, \mathcal{B}_2$ are bases for the same subspace of \mathbb{R}^3 , compute the change of basis matrix C from \mathcal{B}_1 to \mathcal{B}_2 .

Solution: We can row reduce the matrix whose columns are the vectors from \mathcal{B}_2 and \mathcal{B}_1 , in that order, to get

$$\begin{pmatrix} 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 3 \\ 4 & 0 & 0 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

The change of basis matrix is the upper right corner,

$$C = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}.$$

Alternatively, it's easy to compute the coordinate vectors of the first basis in the second basis directly in this case, e.g. the first vector in \mathcal{B}_1 is the second vector in \mathcal{B}_2 , and the second vector in \mathcal{B}_1 is the first vector in \mathcal{B}_2 plus twice the second vector in \mathcal{B}_2 .

7. The matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

has characteristic polynomial

$$\det(A - \lambda I) = (1 - \lambda)^3 (1 + \lambda)^2.$$

(a) (8 points) Find bases for the eigenspaces of A.

Solution: From the given characteristic polynomial, the eigenvalues are ± 1 .

• For
$$\lambda = 1$$
, we find

The general solution of the corresponding homogeneous linear system gives a basis for this null space as

$$\left\{ \begin{bmatrix} 0\\0\\1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\1\end{bmatrix} \right\}.$$

• For $\lambda = -1$, we find

The general solution of the corresponding homogeneous linear system gives a basis for this null space as

$$\left\{ \begin{bmatrix} 0\\-1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\0\\1 \end{bmatrix} \right\}.$$

(b) (2 points) What are the geometric multiplicities of the eigenvalues of A?

Solution: The geometric multiplicity of 1 is 3; the geometric multiplicity of -1 is 2.

(c) (2 points) Is A diagonalizable?

Solution: The algebraic multiplicity of 1 is 3; the algebraic multiplicity of -1 is 2. These agree with the geometric multiplicity, so from class A is indeed diagonalizable.

(d) (3 points) If some matrix B is diagonalizable, show that B^2 is diagonalizable.

Solution: We have $B = PDP^{-1}$, so $B^2 = PD^2P^{-1}$.

Final

8. (a) (4 points) Determine the eigenvalues and algebraic multiplicities of the matrix

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Solution: Expanding $A - \lambda I$ along the third column gives

$$\det(A - \lambda I) = (1 - \lambda)((1 - \lambda)(2 - \lambda) - 6) = (1 - \lambda)(4 - \lambda)(-1 - \lambda),$$

so the eigenvalues are 1, 4, -1, and each has algebraic multiplicity 1.

(b) (3 points) Suppose some matrix B has eigenvalue λ . Show that B^2 has eigenvalue λ^2 .

Solution: Let $B\vec{v} = \lambda \vec{v}$ for $\vec{v} \neq \vec{0}$. Then

$$B^2 \vec{v} = B(B\vec{v}) = B(\lambda\vec{v}) = \lambda(B\vec{v}) = \lambda^2 \vec{v}.$$

(c) (5 points) Let

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

For which value(s) of $0 \leq \theta < 2\pi$ does R_{θ} have (real) eigenvalues? What are those eigenvalues?

Solution: R_{θ} is a 2 × 2 rotation matrix. The corresponding linear transformation almost never just scales some non-zero vector. It only does so when rotating by 0 or π , in which case it has eigenvalue 1 or -1, respectively.

More algebraically, the characteristic equation is

$$\lambda^2 - (2\cos\theta)\lambda + 1 = 0$$

which has discriminant $4\cos^2\theta - 4 = -4\sin^2\theta$. This is almost always negative, in which case the eigenvalues are not real; they're real when it's zero, namely when $\theta = 0$ or π , which gives roots 1 and -1, respectively.