Your Name
\square

Student ID \#

- Do not open this exam until you are told to begin. You will have 1 hour, 50 minutes for the exam.
- Check that you have a complete exam. There are 8 questions for a total of 117 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	21	
2	13	
3	12	
4	18	
5	12	
6	15	
7	117	
8	Total:	12

1. For true/false and multiple choice questions, you are not required to show any work.
(a) (1 point) Any linearly independent set in \mathbb{R}^{n} spans \mathbb{R}^{n}.
\bigcirc True $\sqrt{ }$ False
(b) (1 point) Is $A^{T} A$ symmetric?
$\sqrt{ }$ always \bigcirc never \bigcirc only if A is square
(c) (4 points) Check all of the following properties of determinants which are always true. A, B are $n \times n$ matrices, B is invertible, and c is a scalar.
$\sqrt{ } \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) \bigcirc \operatorname{det}\left(A^{2}+I\right)=\operatorname{det}(A)^{2}+1 \quad \bigcirc \operatorname{det}(c A)=c \operatorname{det}(A)$
$\sqrt{ } \operatorname{det}\left(B^{-1}\right)^{-1}=\operatorname{det}(B) \quad \sqrt{ } \operatorname{det}(A B)=\operatorname{det}\left(A^{T} B^{T}\right) \quad \bigcirc \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
(d) (4 points) Define two of the following three terms: basis, dimension of a subspace, eigenvector. (Clearly specify which terms you are defining.)

Solution:

- Basis: given a subspace S, a basis for S is a linearly independent set spanning S.
- Dimension: given a subspace S, the size of any basis for S is the dimension of S.
- Eigenvector: given a (square) matrix A, an eigenvector \vec{v} of A is any non-zero vector \vec{v} where $A \vec{v}=\lambda \vec{v}$ for some scalar λ.
(e) (4 points) Suppose a matrix A satisfies $A^{3}+A=I$. Show that A is non-singular (i.e. invertible).

Solution: A must be square for A^{3} to be defined. If A were singular, by the Big Theorem, $\operatorname{null}(A) \neq 0$, i.e. there is some $\overrightarrow{0} \neq \vec{v}$ such that $A \vec{v}=\overrightarrow{0}$. But then

$$
\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}=A^{3} \vec{v}+A \vec{v}=I \vec{v}=\vec{v},
$$

a contradiction. Hence A must be non-singular.
Alternate argument: $A\left(A^{2}+I\right)=I$, so $A^{-1}=A^{2}+I$ exists and A is invertible.
(f) (4 points) Suppose

$$
S=\left\{\left[\begin{array}{c}
c_{1} \\
1+c_{2} \\
-c_{1}
\end{array}\right]: c_{1}, c_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}
$$

Is S a subspace of \mathbb{R}^{3} ?
Solution: Yes. Check the three conditions.

- $\overrightarrow{0} \in S$: use $c_{1}=0, c_{2}=-1$.
- If $\vec{x}, \vec{y} \in S$, then $\vec{x}+\vec{y} \in S$:

$$
\left[\begin{array}{c}
c_{1} \\
1+c_{2} \\
-c_{1}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
1+d_{2} \\
-d_{1}
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2} \\
1+\left(c_{2}+d_{2}+1\right) \\
-\left(c_{1}+d_{2}\right)
\end{array}\right] .
$$

- If $\vec{x} \in S, t \in \mathbb{R}$, then $t \vec{x} \in S$:

$$
t\left[\begin{array}{c}
c_{1} \\
1+c_{2} \\
-c_{1}
\end{array}\right]=\left[\begin{array}{c}
t c_{1} \\
1+\left(t+t c_{2}-1\right) \\
-\left(t c_{1}\right)
\end{array}\right] .
$$

Alternatively, S is the span of $\langle 1,0,-1\rangle$ and \vec{e}_{2}, and spans are subspaces.
(g) (3 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose the range of T is a line. Describe the kernel of T geometrically.

Solution: By the rank-nullity theorem, the kernel of T has dimension $2-1=1$, so the kernel is a line.
2. Produce example(s) with the given properties. You are not required to give justification.
(a) (4 points) A square matrix A is called orthogonal if $A^{T} A=I$. It is a fact that if A is orthogonal, then $\operatorname{det}(A)= \pm 1$. Give examples of orthogonal matrices B and C where $\operatorname{det}(B)=1$ and $\operatorname{det}(C)=-1$.

Solution: There are many examples. For instance, take $B=I_{n}$ and $C=$ $\operatorname{diag}(-1,1,1, \ldots, 1)$.
(b) (4 points) Give an example of three pairwise orthogonal vectors in \mathbb{R}^{4} with no 0 coordinates.

Solution: There are many examples. For instance, take $\vec{u}=(1,1,1,1), \vec{v}=$ $(1,1,-1,-1), \vec{w}=(-1,1,-1,1)$.
(c) (3 points) Give a linear transformation T whose corresponding matrix is non-zero and triangular, and where T is not onto.

Solution: There are many examples. For instance, $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T(\vec{x})=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \vec{x}
$$

(d) (2 points) Give an example of a matrix with 4 distinct eigenvalues.

Solution: There are many examples. For instance, take $\operatorname{diag}(1,2,3,4)$.
3. Produce example(s) with the given properties. You are not required to give justification.
(a) (4 points) Suppose $V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset \mathbb{R}^{n}, A=\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{n}\end{array}\right]$, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$. Using this notation, give four of the equivalent conditions in the Big Theorem.

Solution: Possibilities include: V spans $\mathbb{R}^{n} ; V$ is linearly independent; for all $\vec{b} \in \mathbb{R}^{n}$, $A \vec{x}=\vec{b}$ has a unique solution $\vec{x} ; T$ is onto; T is one-to-one; A is invertible; $\operatorname{ker}(T)=\{\overrightarrow{0}\} ;$ V is a basis for $\mathbb{R}^{n} ; \operatorname{col}(A)=\mathbb{R}^{n} ; \operatorname{row}(A)=\mathbb{R}^{n} ; \operatorname{rank}(A)=n ; \operatorname{det}(A) \neq 0 ; \lambda=0$ is not an eigenvalue of A.
(b) (4 points) Give examples of two-dimensional subspaces S_{1} and S_{2} of \mathbb{R}^{4} where $S_{1} \neq S_{2}$ and where S_{1} and S_{2} contain some common non-zero vector.

Solution: One example is $S_{1}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}\right\}, S_{2}=\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{3}\right\}$.
(c) (4 points) Find some linear transformation T such that range T contains $\operatorname{ker} T$ and $\operatorname{ker} T \neq\{\overrightarrow{0}\}$. (Hint: this can be done in two dimensions.)

Solution: One example is the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which sends \vec{e}_{1} to $\overrightarrow{0}$ and \vec{e}_{2} to \vec{e}_{1}. The corresponding matrix is

$$
\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

4. (a) (8 points) Let $S=\operatorname{span}\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\} \subset \mathbb{R}^{4}$ and $\vec{u} \in \mathbb{R}^{4}$ where

$$
\vec{s}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{s}_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \quad \vec{s}_{3}=\left[\begin{array}{c}
2 \\
2 \\
-1 \\
-2
\end{array}\right], \quad \vec{u}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right] .
$$

Compute $\operatorname{proj}_{S} \vec{u}$.
Solution: Applying Gram-Schmidt to the basis $\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\}$ gives an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, namely

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-2
\end{array}\right] .
$$

Using the projection formula gives

$$
\operatorname{proj}_{S} \vec{u}=\operatorname{proj}_{\vec{v}_{1}} \vec{u}+\operatorname{proj}_{\vec{v}_{2}} \vec{u}+\operatorname{proj}_{\vec{v}_{3}} \vec{u}=\frac{3}{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+\frac{-1}{2}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right]+\frac{0}{5}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right] .
$$

(b) (4 points) Let S be a subspace of \mathbb{R}^{n}. Suppose $\vec{u} \in S^{\perp}$. Show that $\operatorname{proj}_{S} \vec{u}=\overrightarrow{0}$.

Solution: Recall that $\operatorname{proj}_{S} \vec{u}$ is characterized by the property that

$$
\operatorname{proj}_{S} \vec{u} \in S, \quad \vec{u}-\operatorname{proj}_{S} \vec{u} \in S^{\perp}
$$

Here we have $\overrightarrow{0} \in S$ and $\vec{u}-\overrightarrow{0}=\vec{u} \in S^{\perp}$, so that $\overrightarrow{0}=\operatorname{proj}_{S} \vec{u}$.
Alternatively, suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is a basis for S. By Gram-Schmidt, we can assume our basis is orthogonal. Since $\vec{u} \in S^{\perp}$, we have $\vec{u} \cdot \vec{v}_{i}=0$ for each i, so that $\operatorname{proj}_{\vec{v}_{i}} \vec{u}=\overrightarrow{0}$. From the projection formula, we then have

$$
\operatorname{proj}_{S} \vec{u}=\operatorname{proj}_{\vec{v}_{1}} \vec{u}+\cdots+\operatorname{proj}_{\vec{v}_{k}} \vec{u}=\overrightarrow{0} .
$$

(c) (6 points) Suppose $S=\operatorname{span}\left\{\vec{s}_{1}, \vec{s}_{2}\right\}$ where

$$
\vec{s}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right] \quad \vec{s}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

Compute a basis for S^{\perp}.
Solution: Recall that $\operatorname{null}(A)=\operatorname{row}(A)^{\perp}$. If A 's rows are \vec{s}_{1}^{T} and \vec{s}_{2}^{T}, then $\operatorname{null}(A)=$ $\operatorname{row}(A)^{\perp}=S^{\perp}$, so compute a basis for null (A). Row reducing gives

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 2 & 3
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -4 & -5 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

so that the general solution of the corresponding homogeneous linear system is

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4 s_{1}+5 s_{2} \\
-2 s_{1}-3 s_{2} \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-2 \\
1 \\
0
\end{array}\right] s_{1}+\left[\begin{array}{c}
5 \\
-3 \\
0 \\
1
\end{array}\right] s_{2} .
$$

Thus a basis is

$$
\left\{\left[\begin{array}{c}
5 \\
-3 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
-2 \\
1 \\
0
\end{array}\right]\right\}
$$

5. (a) (2 points) What is the (smaller) angle between the vectors

$$
\vec{u}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
-3 \\
2 \\
-1 \\
0
\end{array}\right] ?
$$

Solution: Their dot product is 0 , so they form a 90° angle.
(b) (6 points) Show that $\operatorname{null}(A) \subset \operatorname{null}\left(A^{T} A\right)$. Conclude that $\operatorname{rank}(A) \geq \operatorname{rank}\left(A^{T} A\right)$.

Solution: If $\vec{x} \in \operatorname{null}(A)$, then $A \vec{x}=\overrightarrow{0}$, so $A^{T} A \vec{x}=A^{T} \overrightarrow{0}=\overrightarrow{0}$, so $\vec{x} \in \operatorname{null}\left(A^{T} A\right)$, giving the first part. Hence

$$
\operatorname{nullity}(A)=\operatorname{dim}(\operatorname{null}(A)) \leq \operatorname{dim}\left(\operatorname{null}\left(A^{T} A\right)\right)=\operatorname{nullity}\left(A^{T} A\right)
$$

Note that A and $A^{T} A$ have the same number of columns, say m. By the rank-nullity theorem,

$$
m-\operatorname{rank}(A) \leq m-\operatorname{rank}\left(A^{T} A\right)
$$

so that $\operatorname{rank}\left(A^{T} A\right) \leq \operatorname{rank}(A)$. (In fact, $\operatorname{null}\left(A^{T} A\right)=\operatorname{null}(A)$, as follows. If $A^{T} A \vec{x}=\overrightarrow{0}$, then

$$
|A \vec{x}|^{2}=(A \vec{x}) \cdot(A \vec{x})=(A \vec{x})^{T}(A \vec{x})=\vec{x}^{T} A^{T} A \vec{x}=\vec{x}^{T} \overrightarrow{0}=0
$$

so that $A \vec{x}=\overrightarrow{0}$. Using the same argument, it follows that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$.)
(c) (4 points) Find all least squares solutions to the system $A \vec{x}=\vec{y}$ where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right), \quad \vec{y}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Solution: We solve the normal equations $A^{T} A \vec{x}=A^{T} \vec{y}$. Since the columns of A are linearly independent, there is a unique solution, namely

$$
\vec{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)^{-1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Alternatively, the original system is consistent, the columns of A are linearly independent, and we can notice that the sum of the columns of A is \vec{y}. That is, $\widehat{y}=\vec{y}$ and $A \vec{x}=\widehat{y}$ has the suggested unique solution.
6. (a) (4 points) Consider the two linear systems $A \vec{x}=\vec{y}$ and $A \vec{u}=\overrightarrow{0}$. Suppose that \vec{x}_{p} is a solution to the first system. For any solution \vec{u} of the second system, show that $\vec{x}=\vec{x}_{p}+\vec{u}$ is a solution of the first system.

Solution: We have $A \vec{x}_{p}=\vec{y}$ and $A \vec{u}=\overrightarrow{0}$. Then

$$
A \vec{x}=A\left(\vec{x}_{p}+\vec{u}\right)=A \vec{x}_{p}+A \vec{u}=\vec{y}+\overrightarrow{0}=\vec{y} .
$$

(b) (5 points) Solve the two linear systems $A \vec{x}=\vec{u}$ and $A \vec{x}=\vec{v}$ where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right), \quad \vec{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

(Hint: inverse.)
Solution: Row reduction gives

$$
\left(\begin{array}{cccccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{cccccc}
1 & 0 & 0 & 2 & 3 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & -2 & 1
\end{array}\right)
$$

so the matrix is invertible, giving solutions

$$
\vec{x}=A^{-1} \vec{u}=\left[\begin{array}{c}
5 \\
2 \\
-2
\end{array}\right]
$$

and

$$
\vec{x}=A^{-1} \vec{v}=\left[\begin{array}{c}
11 \\
2 \\
-6
\end{array}\right]
$$

(c) (5 points) Let

$$
\mathcal{B}_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right\}, \quad \mathcal{B}_{2}=\left\{\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\} .
$$

Given that $\mathcal{B}_{1}, \mathcal{B}_{2}$ are bases for the same subspace of \mathbb{R}^{3}, compute the change of basis matrix C from \mathcal{B}_{1} to \mathcal{B}_{2}.

Solution: We can row reduce the matrix whose columns are the vectors from \mathcal{B}_{2} and \mathcal{B}_{1}, in that order, to get

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 1 & 1 & 3 \\
4 & 0 & 0 & 4
\end{array}\right) \sim\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The change of basis matrix is the upper right corner,

$$
C=\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right) .
$$

Alternatively, it's easy to compute the coordinate vectors of the first basis in the second basis directly in this case, e.g. the first vector in \mathcal{B}_{1} is the second vector in \mathcal{B}_{2}, and the second vector in \mathcal{B}_{1} is the first vector in \mathcal{B}_{2} plus twice the second vector in \mathcal{B}_{2}.
7. The matrix

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

has characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)^{3}(1+\lambda)^{2}
$$

(a) (8 points) Find bases for the eigenspaces of A.

Solution: From the given characteristic polynomial, the eigenvalues are ± 1.

- For $\lambda=1$, we find

$$
A-I=\left(\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & -1
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The general solution of the corresponding homogeneous linear system gives a basis for this null space as

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

- For $\lambda=-1$, we find

$$
A+I=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The general solution of the corresponding homogeneous linear system gives a basis for this null space as

$$
\left\{\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right\} .
$$

(b) (2 points) What are the geometric multiplicities of the eigenvalues of A ?

Solution: The geometric multiplicity of 1 is 3 ; the geometric multiplicity of -1 is 2 .
(c) (2 points) Is A diagonalizable?

Solution: The algebraic multiplicity of 1 is 3 ; the algebraic multiplicity of -1 is 2 . These agree with the geometric multiplicity, so from class A is indeed diagonalizable.
(d) (3 points) If some matrix B is diagonalizable, show that B^{2} is diagonalizable.

Solution: We have $B=P D P^{-1}$, so $B^{2}=P D^{2} P^{-1}$.
8. (a) (4 points) Determine the eigenvalues and algebraic multiplicities of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 2 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Solution: Expanding $A-\lambda I$ along the third column gives

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)((1-\lambda)(2-\lambda)-6)=(1-\lambda)(4-\lambda)(-1-\lambda)
$$

so the eigenvalues are $1,4,-1$, and each has algebraic multiplicity 1 .
(b) (3 points) Suppose some matrix B has eigenvalue λ. Show that B^{2} has eigenvalue λ^{2}.

Solution: Let $B \vec{v}=\lambda \vec{v}$ for $\vec{v} \neq \overrightarrow{0}$. Then

$$
B^{2} \vec{v}=B(B \vec{v})=B(\lambda \vec{v})=\lambda(B \vec{v})=\lambda^{2} \vec{v}
$$

(c) (5 points) Let

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

For which value(s) of $0 \leq \theta<2 \pi$ does R_{θ} have (real) eigenvalues? What are those eigenvalues?

Solution: R_{θ} is a 2×2 rotation matrix. The corresponding linear transformation almost never just scales some non-zero vector. It only does so when rotating by 0 or π, in which case it has eigenvalue 1 or -1 , respectively. More algebraically, the characteristic equation is

$$
\lambda^{2}-(2 \cos \theta) \lambda+1=0
$$

which has discriminant $4 \cos ^{2} \theta-4=-4 \sin ^{2} \theta$. This is almost always negative, in which case the eigenvalues are not real; they're real when it's zero, namely when $\theta=0$ or π, which gives roots 1 and -1 , respectively.

