Your Name
\square

Student ID \#

- Do not open this exam until you are told to begin. You will have 1 hour, 50 minutes for the exam.
- Check that you have a complete exam. There are 8 questions for a total of 117 points.
- You are allowed to have one handwritten note sheet. Only basic non-graphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	21	
2	13	
3	12	
4	18	
5	12	
6	15	
7	117	
8	Total:	12

1. For true/false and multiple choice questions, you are not required to show any work.
(a) (1 point) Any linearly independent set in \mathbb{R}^{n} spans \mathbb{R}^{n}.
\bigcirc True \bigcirc False
(b) (1 point) Is $A^{T} A$ symmetric?
\bigcirc always \bigcirc never \bigcirc only if A is square
(c) (4 points) Check all of the following properties of determinants which are always true. A, B are $n \times n$ matrices, B is invertible, and c is a scalar.
$\bigcirc \operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) \bigcirc \operatorname{det}\left(A^{2}+I\right)=\operatorname{det}(A)^{2}+1 \quad \bigcirc \operatorname{det}(c A)=c \operatorname{det}(A)$
$\bigcirc \operatorname{det}\left(B^{-1}\right)^{-1}=\operatorname{det}(B) \quad \bigcirc \operatorname{det}(A B)=\operatorname{det}\left(A^{T} B^{T}\right) \quad \bigcirc \operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
(d) (4 points) Define two of the following three terms: basis, dimension of a subspace, eigenvector. (Clearly specify which terms you are defining.)
(e) (4 points) Suppose a matrix A satisfies $A^{3}+A=I$. Show that A is non-singular (i.e. invertible).
(f) (4 points) Suppose

$$
S=\left\{\left[\begin{array}{c}
c_{1} \\
1+c_{2} \\
-c_{1}
\end{array}\right]: c_{1}, c_{2} \in \mathbb{R}\right\} \subset \mathbb{R}^{3}
$$

Is S a subspace of \mathbb{R}^{3} ?
(g) (3 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose the range of T is a line. Describe the kernel of T geometrically.
2. Produce example(s) with the given properties. You are not required to give justification.
(a) (4 points) A square matrix A is called orthogonal if $A^{T} A=I$. It is a fact that if A is orthogonal, then $\operatorname{det}(A)= \pm 1$. Give examples of orthogonal matrices B and C where $\operatorname{det}(B)=1$ and $\operatorname{det}(C)=-1$.
(b) (4 points) Give an example of three pairwise orthogonal vectors in \mathbb{R}^{4} with no 0 coordinates.
(c) (3 points) Give a linear transformation T whose corresponding matrix is non-zero and triangular, and where T is not onto.
(d) (2 points) Give an example of a matrix with 4 distinct eigenvalues.
3. Produce example(s) with the given properties. You are not required to give justification.
(a) (4 points) Suppose $V=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset \mathbb{R}^{n}, A=\left[\vec{v}_{1} \cdots \vec{v}_{n}\right]$, and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$. Using this notation, give four of the equivalent conditions in the Big Theorem.
(b) (4 points) Give examples of two-dimensional subspaces S_{1} and S_{2} of \mathbb{R}^{4} where $S_{1} \neq S_{2}$ and where S_{1} and S_{2} contain some common non-zero vector.
(c) (4 points) Find some linear transformation T such that range T contains $\operatorname{ker} T$ and $\operatorname{ker} T \neq\{\overrightarrow{0}\}$. (Hint: this can be done in two dimensions.)
4. (a) (8 points) Let $S=\operatorname{span}\left\{\vec{s}_{1}, \vec{s}_{2}, \vec{s}_{3}\right\} \subset \mathbb{R}^{4}$ and $\vec{u} \in \mathbb{R}^{4}$ where

$$
\vec{s}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad \vec{s}_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right], \quad \vec{s}_{3}=\left[\begin{array}{c}
2 \\
2 \\
-1 \\
-2
\end{array}\right], \quad \vec{u}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right] .
$$

Compute $\operatorname{proj}_{S} \vec{u}$.
(b) (4 points) Let S be a subspace of \mathbb{R}^{n}. Suppose $\vec{u} \in S^{\perp}$. Show that $\operatorname{proj}_{S} \vec{u}=\overrightarrow{0}$.
(c) (6 points) Suppose $S=\operatorname{span}\left\{\vec{s}_{1}, \vec{s}_{2}\right\}$ where

$$
\vec{s}_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right] \quad \vec{s}_{2}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

Compute a basis for S^{\perp}.
5. (a) (2 points) What is the (smaller) angle between the vectors

$$
\vec{u}=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
-3 \\
2 \\
-1 \\
0
\end{array}\right] ?
$$

(b) (6 points) Show that $\operatorname{null}(A) \subset \operatorname{null}\left(A^{T} A\right)$. Conclude that $\operatorname{rank}(A) \geq \operatorname{rank}\left(A^{T} A\right)$.
(c) (4 points) Find all least squares solutions to the system $A \vec{x}=\vec{y}$ where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right), \quad \vec{y}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

6. (a) (4 points) Consider the two linear systems $A \vec{x}=\vec{y}$ and $A \vec{u}=\overrightarrow{0}$. Suppose that \vec{x}_{p} is a solution to the first system. For any solution \vec{u} of the second system, show that $\vec{x}=\vec{x}_{p}+\vec{u}$ is a solution of the first system.
(b) (5 points) Solve the two linear systems $A \vec{x}=\vec{u}$ and $A \vec{x}=\vec{v}$ where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right), \quad \vec{u}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] .
$$

(Hint: inverse.)
(c) (5 points) Let

$$
\mathcal{B}_{1}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]\right\}, \quad \mathcal{B}_{2}=\left\{\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right\}
$$

Given that $\mathcal{B}_{1}, \mathcal{B}_{2}$ are bases for the same subspace of \mathbb{R}^{3}, compute the change of basis matrix C from \mathcal{B}_{1} to \mathcal{B}_{2}.
7. The matrix

$$
A=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

has characteristic polynomial

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)^{3}(1+\lambda)^{2}
$$

(a) (8 points) Find bases for the eigenspaces of A.
(b) (2 points) What are the geometric multiplicities of the eigenvalues of A ?
(c) (2 points) Is A diagonalizable?
(d) (3 points) If some matrix B is diagonalizable, show that B^{2} is diagonalizable.
8. (a) (4 points) Determine the eigenvalues and algebraic multiplicities of the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 2 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

(b) (3 points) Suppose some matrix B has eigenvalue λ. Show that B^{2} has eigenvalue λ^{2}.
(c) (5 points) Let

$$
R_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

For which value(s) of $0 \leq \theta<2 \pi$ does R_{θ} have (real) eigenvalues? What are those eigenvalues?

