Math 308I Spring 2014
Final Exam
June 9, 2014

Student ID \#

Problem	Points	Possible
1		
2		20
3	20	
4	9	
5		5
6		5
7		5
8		5
9		80
Total		5

- No books allowed. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- In order to receive credit, you must show your work and explain your reasoning.
- Place a box around YOUR FINAL ANSWER to each question.
- If you need more room, use the backs of the pages and indicate to the grader where to find your work.
- Raise your hand if you have a question or need more paper.

Don't open the test until everyone has a copy and the start of the test is announced.

1. (20 points) Short answer questions. No explanation of answers needed for this problem only. Be sure to explain your answers and show your work on all other problems!
(a) True or False: If A, B, and X are invertible matrices such that $X A=B$, then $X=A^{-1} B$.
(b) True or False: If A is a square matrix whose columns add up to the zero vector, then A is invertible.
(c) True or False: If A is an invertible matrix, then A and A^{T} have the same null space.
(d) True or False: If A is a 3×5 matrix such that $(\operatorname{row}(A))^{\perp}=\mathbb{R}^{5}$, then A must be the zero matrix.
(e) True or False: If an $n \times n$ matrix has n distinct eigenvalues, then it must be diagonalizable.
(f) True or False: The transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$ defined by $T(\vec{x})=-\vec{x}$ is a linear transformation.
(g) True or false: The transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{1}$ defined by $T(\vec{x})=\|\vec{x}\|$ is a linear transformation.
(h) If A is a 3×5 matrix, what are the possible values of $\operatorname{nullity}(A)$?
(i) Let $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}$ be linearly independent vectors in \mathbb{R}^{7}, and let $A=\left[\begin{array}{lll}\overrightarrow{a_{1}} & \overrightarrow{a_{2}} & \overrightarrow{a_{3}}\end{array}\right]$. What are the possible values for the rank of A ?
(j) Let S be a subspace of \mathbb{R}^{n}, and let \vec{v} and \vec{u} be vectors in \mathbb{R}^{n}. If $\operatorname{proj}_{S} \vec{v}=\vec{u}$, what is $\operatorname{proj}_{S} \vec{u}$?
2. $\left(20=6+2+8+4\right.$ points) Let $A=\left[\begin{array}{ccc}-5 & -6 & 3 \\ 3 & 4 & -3 \\ 0 & 0 & -2\end{array}\right]$.
(a) Compute the characteristic polynomial of A.
(b) Find all of the eigenvalues of A.
(c) Find a basis for each of the eigenspaces of A.
(d) Is A diagonalizable? If yes, find P and D; if not, explain why.
3. $\left(9=4+5\right.$ points) Let $\vec{x}=\left[\begin{array}{c}3 \\ -4\end{array}\right]$ and $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
(a) Find the coordinate vector $[\vec{x}]_{\mathcal{B}}$ of \vec{x} with respect to \mathcal{B}.
(b) Assume that \mathcal{C} is another basis for \mathbb{R}^{2}, and that the change of basis matrix from \mathcal{C} to \mathcal{B} is $\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$. Find the coordinate vector $[\vec{x}]_{\mathcal{C}}$ of \vec{x} with respect to \mathcal{C}.
4. (6 points) Find a basis for W^{\perp} if

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
1 \\
2
\end{array}\right]\right\}
$$

5. (5 points) Find the coordinate vector $[\vec{v}]_{\mathcal{B}}$ of $\vec{v}=\left[\begin{array}{c}7 \\ -3 \\ 2\end{array}\right]$ with respect to orthogonal basis

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]\right\} \text { of } \mathbb{R}^{3}
$$

6. (5 points) Compute $\operatorname{det} A^{5}$ if $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{ccc}
3 & 0 & 1 \\
2 & 1 & 0 \\
3 & -1 & -1
\end{array}\right] \text { and } D=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

7. (5 points) Show that if λ is an eigenvalue of an $n \times n$ matrix C, then λ^{3} is an eigenvalue of C^{3}.
8. (5 points) Explain why a square matrix that has two equal rows, must have 0 as one of its eigenvalues.
9. (5 points) Let A and B be 3×4 matrices. Show that $W=\left\{\vec{x} \in \mathbb{R}^{4}: A \vec{x}=B \vec{x}\right\}$ is a subspace of \mathbb{R}^{4}.
