Your Preferred Name
\square

Student ID \#

- Do not open this quiz until you are told to begin. You will have 30 minutes for the quiz.
- Check that you have a complete quiz. There are 3 questions for a total of 23 points.
- You are allowed to have one index card of handwritten notes (both sides). Only basic nongraphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	6	
2	10	
3	7	
Total:	23	

1. (6 points) Consider the polynomial

$$
p(x)=3 x^{3}+4 x^{2}+x+1
$$

Express $p(x)$ in the form

$$
p(x)=a(x+1)^{3}+b(x+1)^{2}+c(x+1)+d
$$

by solving an appropriate linear system. (Hint: $(u+v)^{3}=u^{3}+3 u^{2} v+3 u v^{2}+v^{3}$.)

Solution: We compute

$$
\begin{aligned}
p(x) & =a(x+1)^{3}+b(x+1)^{2}+c(x+1)+d \\
& =\left(a x^{3}+3 a x^{2}+3 a x+a\right)+\left(b x^{2}+2 b x+b\right)+(c x+c)+d \\
& =a x^{3}+(3 a+b) x^{2}+(3 a+2 b+c) x+(a+b+c+d)
\end{aligned}
$$

Equating coefficients gives the linear system

$$
\begin{aligned}
a & =3 \\
3 a+b & =4 \\
3 a+2 b+c & =1 \\
a+b+c+d & =1 .
\end{aligned}
$$

Reversing the order of the variables and equations would make the system triangular. Solving for a, b, c, d in that order quickly gives

$$
a=3, b=-5, c=2,1
$$

Hence

$$
p(x)=3 x^{3}+4 x^{2}+x+1=3(x+1)^{3}-5(x+1)^{2}+2(x+1)+1 .
$$

2. Consider the following linear system:

$$
\begin{array}{r}
4 x_{1}+2 x_{2}-x_{3}+2 x_{4}=6 \\
2 x_{1}+x_{2}+x_{3}+4 x_{4}=3 \\
-x_{1}+0 x_{2}-x_{3}+x_{4}=0
\end{array}
$$

(a) (4 points) Give an echelon form matrix equivalent to the augmented matrix of the linear system.

Solution: Beginning with

$$
\left(\begin{array}{ccccc}
4 & 2 & -1 & 2 & 6 \\
2 & 1 & 1 & 4 & 3 \\
-1 & 0 & -1 & 1 & 0
\end{array}\right)
$$

apply ERO's $2 R_{2}-R_{1} \Rightarrow R_{2}, 4 R_{3}+R_{1} \Rightarrow R_{3}, R_{2} / 3 \Rightarrow R_{2}$, and $R_{2} \Leftrightarrow R_{3}$ to get

$$
\left(\begin{array}{ccccc}
4 & 2 & -1 & 2 & 6 \\
0 & 2 & -5 & 6 & 6 \\
0 & 0 & 1 & 2 & 0
\end{array}\right)
$$

which is in echelon form.
(b) (4 points) Give a reduced echelon form matrix equivalent to the augmented matrix of the linear system.

Solution: Continuing from the solution to (a), apply $R_{2}+5 R_{3} \Rightarrow R_{2}, R_{1}+R_{3} \Rightarrow R_{1}$, $R_{2} / 2 \Rightarrow R_{2}, R_{1} / 2 \Rightarrow R_{1}, R_{1}-R_{2} \Rightarrow R_{1}, R_{1} / 2 \Rightarrow R_{1}$ to get

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & -3 & 0 \\
0 & 1 & 0 & 8 & 3 \\
0 & 0 & 1 & 2 & 0
\end{array}\right)
$$

which is in reduced echelon form.
(c) (2 points) What is the general solution of the linear system?

Solution: From (b), x_{4} is the only free variable. Reading off the general solution gives

$$
\begin{aligned}
& x_{1}=3 s \\
& x_{2}=-8 s+3 \\
& x_{3}=-2 s \\
& x_{4}=s .
\end{aligned}
$$

3. Give examples satisfying the following conditions. You are not required to justify your answers.
(a) (2 points) A linear system not in echelon form but whose augmented matrix is in echelon form.

Solution: One example is

$$
\begin{array}{r}
x+y=0 \\
0 x+0 y=1
\end{array}
$$

The second row has no leading variable, so the system is not in echelon form. The augmented matrix is

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

which is in echelon form.
(b) (3 points) Two different linear combinations which result in the same vector. Give a sketch of the situation.

Solution: One example is

$$
\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{1}{-1}=\binom{1}{0}=\frac{1}{2}\binom{0}{1}+\frac{1}{2}\binom{2}{-1}
$$

(Sketch omitted; this point is the midpoint of two line segments.)
(c) (2 points) A point \vec{u} in \mathbb{R}^{4} which is not a linear combination of four vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ in \mathbb{R}^{4}.

Solution: One example is $(0,0,0,1)$ not being a linear combination of

$$
(1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,0)
$$

since any linear combination of these four vectors has 0 in the fourth coordinate.

