Your Preferred Name
\square

Student ID \#

- Do not open this quiz until you are told to begin. You will have 30 minutes for the quiz.
- Check that you have a complete quiz. There are 3 questions for a total of 28 points.
- You are allowed to have one index card of handwritten notes (both sides). Only basic nongraphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	12	
2	7	
3	9	
Total:	28	

1. Consider the vectors

$$
\vec{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right) .
$$

(a) (6 points) Determine if \vec{v} is in the span of $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$.

If so, write \vec{v} as an explicit linear combination of the other vectors.
(b) (3 points) Are $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ linearly dependent? Explain.
(c) (3 points) Are $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{v}$ linearly dependent? Explain.
2. Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
\int_{0}^{\pi}\left(x_{1} \theta+x_{2}\right) \cos \theta d \theta \\
\int_{0}^{\pi}\left(x_{1} \theta+x_{2}\right) \sin \theta d \theta
\end{array}\right]
$$

(Hints: $\int \theta \cos \theta d \theta=\cos \theta+\theta \sin \theta+C$ and $\int \theta \sin \theta d \theta=\sin \theta-\theta \cos \theta+C$.)
(a) (4 points) Is T a linear transformation? Justify your answer by verifying the relevant properties or by giving an explicit example where they fail.
(b) (3 points) If T is linear, find the matrix of T. If T is not linear, compute $T\left(\vec{e}_{1}\right)$ and $T\left(\vec{e}_{2}\right)$.
3. Give examples matching the following specifications. You do not need to justify your answers.
(a) (3 points) Three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ in \mathbb{R}^{4} which are linearly independent and where no coordinate is 0 .
(b) (3 points) A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $[T] \neq I$ yet $[T]^{2}=I$.
(c) (3 points) Matrices A and B such that

$$
A B=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad \text { and } \quad B A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

