Your Preferred Name
\square

Student ID \#

- Do not open this quiz until you are told to begin. You will have 30 minutes for the quiz.
- Check that you have a complete quiz. There are 3 questions for a total of 29 points.
- You are allowed to have one index card of handwritten notes (both sides). Only basic nongraphing scientific calculators are allowed, though you should not need one.
- Cheating will result in a zero and be reported to the Dean's Academic Conduct Committee.
- Show all your work. Unless explicitly stated otherwise in a particular question, if there is no work supporting your answer, you will not receive credit for the problem. If you need more space to answer a question, continue on the back of the page, and indicate that you have done so.

Question	Points	Score
1	9	
2	10	
3	10	
Total:	29	

1. (9 points) Below is a list of definitions or equivalent conditions. Clearly write the number of the corresponding definition or equivalent condition next to each given term. Some numbers will not be used.
(a) 9 dimension
(b) $\quad 2$ basis
(c) 1 subspace
(d) $\quad 7 \quad$ row space
(e) 8 invertible
(f) $\quad 3 \quad$ kernel
(g) $\quad 5 \quad$ column space
(h) 6 range
(i) 11 nullity
2. a subset of \mathbb{R}^{n} which contains $\overrightarrow{0}$ and is closed under linear combinations
3. a linearly independent spanning set
4. $\left\{\vec{x} \in \mathbb{R}^{n}: T(\vec{x})=\overrightarrow{0}\right\}$
5. $\left\{\vec{x} \in \mathbb{R}^{n}: A \vec{x}=\overrightarrow{0}\right\}$
6. $\left\{A \vec{x}: \vec{x} \in \mathbb{R}^{n}\right\}$
7. $\left\{T(\vec{x}): \vec{x} \in \mathbb{R}^{n}\right\}$
8. $\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ where \vec{v}_{i} is the i th row of A
9. $\operatorname{det}(A) \neq 0$
10. the number of vectors in a basis for a subspace
11. the number of vectors in a basis for the row space
12. the number of vectors in a basis for the null space
13. Consider the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & 2 & -1 & -2 \\
2 & 4 & -3 & -5 \\
-1 & -2 & 0 & 1
\end{array}\right)
$$

(a) (4 points) Give a basis for $\operatorname{null}(A)$.

Solution: The RREF of A is

$$
\left(\begin{array}{cccc}
1 & 2 & 0 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The general solution of the corresponding homogeneous system is then

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-2 s_{1}+s_{2} \\
s_{1} \\
-s_{2} \\
s_{2}
\end{array}\right)
$$

so that a basis for the null space is given by

$$
\left\{\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1 \\
1
\end{array}\right)\right\}
$$

(b) (3 points) Give a basis for $\operatorname{row}(A)$.

Solution: The non-zero rows of the RREF of A are a basis for the row space, namely

$$
\left\{\left(\begin{array}{llll}
1 & 2 & 0 & -1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}\right)\right\} .
$$

(c) (3 points) Give a basis for $\operatorname{col}(A)$.

Solution: The columns of A for which that column has a pivot in the RREF give a basis, namely

$$
\left\{\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-3 \\
0
\end{array}\right)\right\}
$$

3. (a) (3 points) Compute

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & -1
\end{array}\right)
$$

Solution: 4.

(b) (2 points) Give an example of a non-invertible matrix of rank 2. You do not need to justify why your example works.

Solution: The matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

clearly has rank 2 but is not square so can't be invertible.
(c) (2 points) Suppose A and B are $n \times n$ matrices where $A=(I+B)(I-B)^{-1}$. Solve for B in terms of A; assume any inverses you encounter exist.

Solution: Multiplying on the right by $I-B$ gives $A-A B=I+B$, so that $A-I=A B+B=(A+I) B$, so that $B=(A+I)^{-1}(A-I)$.
(d) (3 points) Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with one-dimensional range. You do not need to justify why your example works. What must the dimension of the kernel be?

Solution: Projecting onto the x-axis is such a linear transformation. Explicitly, this is

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

It has one-dimensional kernel, namely the y-axis. By the rank-nullity theorem, any such T must have one-dimensional kernel.

