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Abstract. This document summarizes our basic material on inverses. It is largely covered
in §3.3 of Holt with a few additions.

1. Inverses, Theory

Definition 1. A function f : X → Y is invertible if there is some function g : Y → X
where both

(a) (g ◦ f)(x) = x for all x ∈ X, and
(b) (f ◦ g)(y) = y for all y ∈ Y .

Remark 2.

• (a) alone is equivalent to f being one-to-one. In this case, g is called a left inverse
of f .
• (b) alone is equivalent to f being onto. In this case, g is called a right inverse of f .
• If both a left and right inverse exist, they are equal. It follows that in this case all

three types of inverses agree and are unique. Hence we can talk about “the inverse”
of f if it has a two-sided inverse, this is unique, and we can write f−1 for it.
• Hence f is invertible if and only if f is one-to-one and onto. In this case g is called a

two-sided inverse of f or just an inverse of f .

Example 3. Let R(θ) be a 2×2 rotation matrix, so T (u) := R(θ)u rotates u counterclockwise
by θ. This function is invertible: simply rotate clockwise by θ. Hence U(u) := R(−θ)u is
T−1.

Theorem 4. If T : Rm → Rn is linear, then the following are equivalent.

(a) T is invertible.
(b) m = n and any of the equivalent conditions in the big theorem hold.

Proof. (b) ⇒ (a): If the big theorem holds, then T is one-to-one and onto, so T is invertible.

(a)⇒ (b): If T is invertible, then T is one-to-one and onto, so the m columns of the matrix
of T are linearly independent and span Rn. Linear independence says that m ≤ n, and that
they span Rn says that m ≥ n, so m = n. �

Remark 5.
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• To most people, the “big theorem” is thought of as a bunch of equivalent conditions
for a linear transformation to be invertible.
• Recall one condition in the big theorem is that Ax = b has a unique solution x for

all b in Rn. In this case, x = A−1b since AA−1b = Ib = b.

Corollary 6. If T : Rn → Rn is linear, then it is invertible if and only if it has a left or right
inverse. In this case, all three types of inverses are equivalent.

Exercise 7. If T is linear and T−1 exists, then T−1 is also linear.

Definition 8. Let A be a matrix. A is invertible whenever its linear transformation
T (x) := Ax is. In this case, the matrix of T−1 is denoted A−1. Equivalently, A is invertible
if there is a matrix B such that AB = I = BA.

• A square matrix which is not invertible is singular.
• A square matrix which is invertible is called nonsingular.

Remark 9.

• Holt’s definition is different but equivalent. He says that A is invertible if A is square
and there is a matrix B such that AB = I. Hence Holt is really saying A has a right
inverse and is leveraging the very special fact that for linear maps given by square
matrices, all three types of inverses coincide.
• Down-to-earth version: if B = [b1 · · · bn], then I = [e1 · · · en] and AB = I says

precisely that [Ab1 · · · Abn] = [e1 · · · en], i.e. Abi = ei.

Proposition 10. Let A and B be invertible n × n matrices and let C and D be n × m
matrices. Then:

(a) A−1 is invertible with inverse (A−1)−1 = A.
(b) AB is invertible with inverse (AB)−1 = B−1A−1.
(c) If AC = AD, then C = D.
(d) If AC = 0, then C = 0.

Proof.

(a) Write X for A−1 for clarity. Since A is invertible, XA = I, so A = X−1 = (A−1)−1.
(b) Class exercise.
(c) Left multiply by A−1 to get A−1AC = A−1AD, so IC = ID, so C = D.
(d) Use D = 0 in (c).

�

2. Inverses, Computation

Example 11. Diagonal matrices are a simple, explicit, and important case. Recall that
D := diag(d1, . . . , dn) denotes the n× n matrix with d1, . . . , dn along the main diagonal and
zeros elsewhere.
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Class exercise: when is D invertible, and if it is invertible what is its inverse? Geometric
intuition: D scales the ith axis by a factor of di. To undo this, scale again by a factor of 1/di.
This breaks if we scaled by 0, but it couldn’t be undone then anyway.

More formally, if some di is zero, then Dei = diei = 0, so D is not invertible. If no di is
zero, then we can check that diag(d1, . . . , dn)−1 = diag(d−1

1 , . . . , d−1
n ). (How? Explicit matrix

multiplication; compute the composite’s action on standard basis vectors; the geometric
statement above; general composition rule for diagonal matrices; . . . .)

Remark 12. Here is a general technique for computing matrix inverses. For simplicity of
notation, suppose A is 3× 3. We wish to find B such that AB = I. If B = [b1 b2 b3], we
need Abi = ei, so we could solve three systems of equations Ax = e1, Ax = e2, Ax = e3. For
each, we could form the augmented matrix [A | ei] and row reduce it. If A is invertible, this
system will have a unique solution, so the augmented matrix must have 3 pivots without a
pivot in the last column, so it will be of the form1 0 0

0 1 0 bi

0 0 1

 .
Note that the particular elementary row operations in Gauss–Jordan elimination here do not
depend on i. Hence we can do everything at once by row reducing the “very augmented”
matrix [A | I] and reading off the columns of B from the right half.

To summarize: to compute a matrix inverse, row reduce [A | I]. If the result is of the form
[I | B], then B = A−1. Otherwise, A is not invertible.

Example 13. For two-by-two matrices, there is a relatively common, general formula for the

matrix inverse. By Proof Homework 1, #2, A =

[
a b
c d

]
is invertible if and only if ad 6= bc,

so if and only if ad− bc 6= 0. In that case, one may show[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

Holt calls this the “quick formula”.
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